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Abstract—In this paper, we propose to learn Llfestyles of

via Mobile Phone Sensing

Teng Li, Guoliang Xue aapibYang

a lifestyle learning system can be used to support a large

mobile users via mobile Phone Sensing (LIPS), and we developvariety of applications for improving life quality. For exeple,

a system and algorithms to realize this idea. First, we presg
the workflow and architecture of our system, LIPS. Combining

both unsupervised and supervised learning, we propose a hy-

brid scheme for lifestyle learning, which consists of two pds:
characterization and prediction. Specifically, we presenta two-
stage algorithm to characterize the lifestyle of a mobile usr using
Places of Interest (Pols), which leverages two different gbrithms
for coarse-grained and fine-grained clustering in two stage

respectively. Based on discovered Pols, we present a method

to build a model to predict his/her future activities using a
supervised classification algorithm. In addition, we preset an
adaptive sampling algorithm for improving energy efficieng,
which leverages both the discovered Pols and the lifestyle adel
for adaptively controlling the sampling rate. We implemented
the proposed system and algorithms based on the Android
platform. We have validated and evaluated LIPS via extensie
field tests carried out for over 1.5 months in 6 cities of USA.
The experimental results show that LIPS can 1) well discover
Pols of mobile users, 2) precisely predict their future actities,
and 3) achieve significant energy savings (compared to ped
sampling).

Index Items: Mobile Computing, Mobile Phone Sensing,
Human-Centric Sensing, Energy Efficiency

|. INTRODUCTION

a major application is to recommend local businesses tolmobi
users based on not only his/her location but also his/her
lifestyle. This work represents one of the first efforts gon
this line, which is focused on lifestyle learning, while Vaay
lifestyle-aware recommendation or lifestyle-based apions

for future research.

We build a system, LIPS, to realize our idea. LIPS consists
of a mobile frontend and a learning server on the backend.
The mobile frontend can be implemented as a mobile app that
reports the context information collected by sensors of the
mobile phone to the learning server periodically. Basedhi t
information, the learning server builds models for liféssyof
mobile users. Combining both unsupervised and supervised
learning, we propose a hybrid scheme for lifestyle learning
which consists of two parts: characterization and prealicti
Specifically, we present a two-stage algorithm to charater
the lifestyle of a mobile user using Places of Interest (Rols
which leverages two different algorithms for coarse-gedin
and fine-grained clustering in two stages respectivelyeBas
on discovered Pols, we present a supervised learning based
algorithm to build a model for predicting the future actieg

A smartphone is usually equipped with a rich set of enygf 3 mobile user.

bedded sensors such as camera, GPS, accelerometer, dighy addition, operating smartphone sensors (such as GPS)
tal compass, gyroscope, and so on. External sensor(suche@sid be energy consuming. Even though some sensors (such
Google Glass, Smart Watch, Fitbit, Sensordrone [19], €&m) as accelerometer) are always active, a thread needs to be
be connected to the phone via its network interface (such &sawned to collect its readings, which consumes energy too.
Bluetooth). The sensors of a smartphone can easily detect{ enable green lifestyle learning, we present an adaptive
context (such as location, local weather, activities,)&tits sampling algorithm, which adaptively controls the samplin
mobile user. rate according to discovered Pols and the lifestyle model.
In this paper, we propose to learn Lifestyles of mobile we propose practical and effective solutions to fundanienta

users via mobile Phone Sensing (LIPS). According to busiroblems of lifestyle learning (learning and energy-editi

nessdictionary.confLifestyle is expressed in both work andsampling). Specifically, we summarize our contributionthie
leisure behavior patterns and (on an individual basis) ifgllowing:

activities, attitudes, interests, opinions, values, atidcation

of income.” Our idea is to leverage multiple sensors on a
smartphone for obtaining a comprehensive view of the cantex
(such as location, local weather, activities, etc.) of a ieob
user over a long period, and to find out what a mobile
user likes to do (characterization) and what he/she will do
next (prediction) based on the collected sensor data. Such

o We present an effective hybrid scheme for lifestyle learn-
ing, which combines both unsupervised and supervised
learning.

« We present an energy-efficient sampling algorithm, which

leverages the discovered Pols and the lifestyle model for

adaptively controlling the sample rate.

We performed extensive field tests to validate and eval-

uate LIPS. The experimental results well justify the
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I Mobile "} Learning Server then stores them into a database. The mobile frontend
3Fr°“‘e“d adaptively adjusts its sampling rate to trade off energy

efficiency and learning performance (Section V).
g @ 4:; 4) The offline modeler periodically pulls sensor samplesnfro
the database.

Online Server OfﬂmeModeler 5) The offline modeler discovers Pols and builds the lifestyl
”””””””””””””””””””””””””””””””””” model for activity prediction on a daily basis according to
Fig. 1. The LIPS system received sensor samples. And, it updates the online server

with Pols and lifestyle model.

6) The mobile frontend periodically sends a query with the
We can simply deploy multiple learning servers and load current context information (Section Ill) to the online
balancers if we need to serve a large number of mobile usersserver. This query can also be sent in an ad-hoc manner.
from different locations. 7) The online server replies with the prediction resultsctSe

In our design, a learning server is composed of an online tion I1I-B).

server and an offline modeler. The online server supportsWe implemented the mobile frontend and the online server
a set of services for the mobile frontend, including logirfor sensor data collection based on the SOR system [18] we
raw data processing, messaging, notification, etc. Thenefflibuilt before. Due to space limitation and similarity, we omi
modeler, however, deals with lifestyle learning in the mawk details about them, which can be found at [18]. The offline
which includes running the clustering-based charactgoiza modeler consists of four modules: Data Pre-processor, Pol
algorithm (Section 1ll-A) and the supervised learning lshseDiscover, Lifestyle Modeler and Place Information Provide
prediction algorithm (Section 11I-B) on collected sens@tal The Data Pre-processor decodes binary raw data, based on
The online server is designed to be light-weighted, whiclthich numerical values (a.k.a feature data) will be gererat
provides immediate online responses to the mobile fronter{&ection Ill) and stored into the database as input for the Po
However, lifestyle learning involves compute-intensiveda Discover and the Lifestyle Modeler. The Pol Discover anegyz
time-consuming workload, which can only be done in aeach user’s feature data and discovers his/her Placeseoé#nt
offline manner on powerful servers. This design ensures tl{Rbls), which will be described in details in Section IlI-A)
online requests from the mobile frontend are not delayed e Lifestyle Modeler builds a model for predicting future

the time-consuming learning process. activities of a mobile user based on discovered Pols using
a supervised learning algorithm, which will be introduced i
details in Section I1I-B). The Place Information Provider i
used to retrieve the actual place (such as restaurant,ecoffe
— | shop, etc.) information given the location of a Pol, whicti wi
L Sowiguont | be used for building the lifestyle model. In our system, we
Sensing ) sworsame used Google’s Place API [8] to obtain such information.

Sensor sarmple information of a mobile user. Therefore a sensor could be:

1) an embedded sensor (such as GPS, accelerometer, digital

compass, etc.) on a mobile phone; 2) a service that can

provide context information (such as local weather) to reobi

users via APIs; or 3) an external sensor (such as Fitbit and

Sensordrone [19]) that can be connected to a mobile phone

Fig. 2. The workflow of LIPS via its network interface (such as Bluetooth).

We illustrate how the mobile frontend, the online server and

the offline modeler interact with each other and how LIPS . LIFESTYLE LEARNING

works in Fig. 2, which are further described in the following As described above, the goal of lifestyle learning is to find

1) A mobile user registers for the lifestyle learning seevicout what a mobile user likes to do (characterization) andtwha
by sending his/her personal information along with his/hdre/she will do next (prediction). Mobile phones are usually
preferences (e.g. only allowing coarse locations ratham thcarried by their users almost all the time, which make them
fine locations) to the online server. perfect devices for providing useful context informatiam t

2) The online server accepts (or rejects) the registraten tearn the lifestyle of mobile users. In LIPSensor samples
qguest and sends sensing scripts according to user preéee collected periodically by the mobile frontend for lifde
ences to the mobile frontend. learning. A sensor sampleis defined by a 3-tuplét,!, D),

3) The mobile frontend collects the mobile user's contextheret is the timestamp] is the location, andD is a set
information (Section Ill) using mobile phone sensors pef raw sensor readings that are used to produce feature data
riodically and sends sensor data to the online server, whifdescribed below).

! Model
%
5

Prediction

Lifestyle " i i
| odeing In addition, “sensor” has a much broader meaning in
3 Change the sampling rate . .
Pilaadiateiitindt ' _ sorsorsamie LIPS, which refers to data source that can provide context



In LIPS, a list of features are extracted from a sensor
sample, which are then used as input for discovering of Pols ~ Feature tuples == l DBSCAN | == | MeansShit | == Pols

of a mobile user (Section llI-A) and for predicting his/her 1. Timestamp 1. Clusters found
activities (Section 111-B): e caion ate 2. Lucation
1) Day and Time:the day (Monday, Tuesday, etc.) and the 4. Speed
time at the sampling instant. Note that both features are
very important since the period of many people’s lifestyles Fig. 3. The Pol discovery algorithm
is one week and usually their activities in a day are highly
time-dependent. to the following reasons: 1) Those clustering algorithregt th

2) Location and Speedhe location and the moving speed atequire the number of clusters as input, such K-means [9],
the sampling instant, which are obtained via either GRSe not suitable here, since the number of Pols are not
(fine) or Google’s Location Services (coarse) according town beforehand. 2) A naive approach, in which clusters
user’s preferences. are determined simply based on the amount of time a user

3) Moving State {On-foot, Driving, Bicycling, Still, Un- stays in an area, is not applicable since a user may stay on
known}, which can be obtained by calling the activititycertain part of a road for a long time due to traffic jam. 3)
recognition API [1] in the Google Play Services. Clustering simply based on locations without taking timein

4) Step Frequencythe numbers of steps per second (if onconsideration, may lead to many false Pols due to overlgppin
foot). Each sensor sample includé® continuous ac- samples collected over multiple days. 4) It is not reasanabl
celerometer readings, which are then used to estimate thedetermine whether a place is a Pol or not simply based on
step frequency using the method introduced in [2]. a moving speed threshold. For example, a mobile user may

5) Weather Condition{Sunny, Cloudy, Raining, Snowing jog around a place (such as a park or a lake) with samples
which can be obtained by calling the REST Weath&venly distributed around it. By just setting up a fixed speed
Channel API [21]. threshold for clustering, it may not be discovered as a Pol.

6) Local Outdoor Temperaturehe outdoor temperature at theln summary, clustering should be done according to multiple
sampling instant and location, which can be obtained liglevant features rather than a single feature.
calling the REST Weather Channel API [21] too. Based on our observations, we design a two-stage algorithm

7) User State{Active, Inactive, which shows whether or notto discover Pols from a set of sensor samples, which is
the user is actively using the mobile phone. This can liustrated in Fig. 3. As described above, instead of diyect
obtained by using the Android system API to check if anysing raw sensor data, we extract useful information from
app is launched in the past sampling period. collected sensor samples to produce feature data as input.
We select these features to build the lifestyle model becalde choose the DBSCAN [7] and MeanShift [5] algorithms

we believe they may all have impacts on a mobile useifer coarse-grained and fine-grained clustering in the fingt a

activities. For example, a mobile user usually goes to second stage respectively. In the first stage, our main goal i

restaurant on Saturday night, however, if the weather hagppéo filter out those samples related to movements between two

to be bad (e.g., snowing), he/she may decide not to go outPols rather than actual Pols. For each collected samgl§,
. o . we extract itstimestamp, location, moving state and moving

A. Lifestyle Characterization with Places of InterestsI&po speedto build a feature tuplé = (¢,1,a,v) € F. The tuple
In order to learn lifestyle of a mobile user, we first neetlalues are normalized in each feature dimension.

to know which places he/she likes to go, which, however, is We feed those feature tuples into the DBSCAN algorithm

hard to tell simply based on a set of collected sensor samplesproduce a set of clusters. DBSCAN is a density-based

since some of them may be taken when he/she moves frotastering algorithm, which ensures that the output chssiee

one place to another. We characterize the lifestyle of a usgeas of high density while outside of the clusters are areas

using Pols. A Pol is a place that a mobile user has visiteof, low density [7]. This is desirable for our problem since

which could be a grocery store, a shopping mall, a restauraDBSCAN can efficiently filter out those sparsely distributed
etc. Discovering Pols for a mobile user is the first step samples related to movements between Pols. Moreover, we
lifestyle learning. perform clustering based on multiple features, which avoid
From our field-tests, we find that sensor samples hatlee potential issues related to single feature based clugte
the following two properties: 1) The set of collected sensalescribed above. Specifically, we first perform DBSCAN
samples contains both samples related to Pols, and samplesed on the feature tuples to discover a Gebf clusters

corresponding to movements between Pols, which may f@t= {C;,--- ,Cx} from F. Then for each cluste€; € C,

be relevant. 2) The number of Pols can not be determinagply DBSCAN again to further divide this cluster into a set

beforehand. of sub-clustersC; = {C,1,---,C; a}. Note that for most
Intuitively, we can apply a clustering algorithm to findcases, one round of DBSCAN is sufficient, i.e., the second

clusters based on collected samples, which can then be usmehd of DBSCAN will not be able to divide eadi; € C

to identify desired Pols. However, we find most existinfurther into multiple smaller clusters. However, the saton

clustering algorithms are not suitable for our problem dueund of DBSCAN is necessary in some cases. For example,



if a mobile user visits places in two different cities, onlyat  visited. For a mobile user, Pojsandp’ may be two different
clusters (each corresponds to a city) will be returned dlffter restaurants he/she usually goes to, but they both corrdspon
first round because DBSCAN does clustering based on tleethe same activity “dining”. So we are actually interesired
density of samples. This is obviously too coarse so cluggeriknowing what kind of activities a mobile user will do in the
needs to be done again to improve granularity. After clirsger near future (rather than exactly which place he/she wilityvis
using the DBSCAN algorithm, we can have a set of clustessich that we can provide related and useful informationh(suc
of feature tuples. However, since DBSCAN is not a centroids recommendation) to him/her.
based clustering algorithm, it does not return clusteremsnt In LIPS, we define a set of activities: mall shopping, din-
which is what we need. In addition, we find that if multiplang, grocery shopping, outdoor recreation, indoor redoeat
Pols are close to each other (e.g., multiple Pols in a plaza)ovie, gas station, car wash, exercise, laundry, librang a
the related feature tuples may be put into the same clugter.s8hooling. This set can certainly be expanded according to
we still need to do fine-grained clustering following the tfirsthe new Pols and needs. In addition, we need to map Pols to
stage. activities. We again use Google Place API to find the type of
In the second stage, we use the MeanShift algorithm on eadch Pol. For example, given a hiking trail, it will returs it
cluster found in the first stage. In this stage, only locatiare type as “park”. In LIPS, We then create a table to map each
used for clustering. The MeanShift algorithm uses a similéype to certain activity. For example, if the type of a Pol is
idea for clustering but can return cluster centers (if edabter “park”, its corresponding activity is “outdoor recreation
has a convex shape) [5]. These cluster centers will then bdn order to build a lifestyle model for future activity
returned as the set of Pols. prediction. We need to have a training set, in which each
We formally present our Pol discovery algorithm as Algoitem is afeature-activitytuple (f; 7). f = (d, t,1, a, v, w, p, u),
rithm 1, in which the first stage starts from Step 3, and thehered is the day (Monday, Tuesday, etct)is the time,l is
second stage starts from Step 8. We ¢sendr; to denote the the location,a is the moving statey is the moving speedy
center and the corresponding radius of clusiérespectively. is the weather conditior, is the outdoor temperature,is the
user state (active or not); andis the associated activity. Note

Algorithm 1 The Pol Discovery Algorithm that here the feature tuple includes all features discusstd
beginning of this section, which is different from that mwr
Input: The set of feature tuple; duced in the previous section. In addition, we aim to predict
Output: The set of PolP; the activities in the next, to 7. hours so when building the
training set, the activities need to be the activities disced
1P« 0 in that future period. For example, suppose a feature tuple o
22 C+0; a mobile user, Alice, at 11:00AM i, and we want to predict
3: {Cy, -+ ,Cn} < DBSCAN(F); her activities in the next 1 to 2 hours (i.e., between 12:00PM
4: for C; € {Cy,---,Cy} do and 1:00PM), and her activity during that period turned ait b
5. {Cj1,---,Cjum} < DBSCAN(C;); “dining” according to some collected samples, then we will
6: C+ CU{Cj1, - ,Cjum}; add a feature-activity tupléf, “dining”) into the training set.
7: end for Of course, if there were more than one activities, say “djhin
8: for C;; € C do and "indoor recreation” during that period, we will add both
o F 0 (f, “dining”) and(f, “indoor-recreation/’into the training set.
10:  for f=(t1,a,v)€C;;do After the training set is built, we can apply a supervised
11 F' « F'U{l}; classification algorithm [9] to make predictions. We tested
12: end for _ few widely-used algorithms with the collected sensor dath a
13 {Cy,---,CL} < Meanshi f t (F); found that Support Vector Machines (SVM) [9] turns out to
14 P PU{(cr, ), (i) be the most effective one. Moreover, it is known that SVM is
15: end for usually very effective in the high-dimensional spaces (ynan
16: return P features), fast and memory-efficient. So in LIPS, we employ

SVM to predict future activities of a mobile user. We chose
The output of this algorithm is a sdP of Pols (with to use the Gaussian Radial Basis Function (RBF) kernel [9]
center locations and radii). Obviously, these locationsnca for high accuracy in our implementation. SVM can return a
be directly used to prediCt activities of the mobile users. |mode| such that when given a feature tup|e (as shown above)

LIPS, the Place Information Provider uses the Google Plagea mobile user, it can return the probability of each pdssib
API [8] to find the actual places according to these locationgctivity he/she may perform in the future.

B. Lifestyle Modeling for Activity Prediction IV. LIFESTYLE-AWARE ADAPTIVE SAMPLING

In this section, we describe how to predict a mobile user’'s On one hand, if the sampling rate is reduced (i.e., sampling
activities in the nexf” hours according to the discovered Polseriod is increased), energy spent for sensor data adquisit
Note that Pols tell us exactly which places the mobile usand communications can certainly be reduced. Moreover, the



mobile phone system will have a much higher chance to enflgorithm 2 Lifestyle-aware Adaptive Sampling Algorithm
the sleep mode, which is known to consume much less ene é v Off n T-
than the active mode does. On the other hand, reducing [@ by =T BT

utput: 77,
sampling rate may lead to less samples, which will have a
negative impact on the performance of Pol discovery and
activity prediction. Hence, we need to develop an effective-

- if f;_7 = nil then

algorithm that adaptively adjusts the sampling rate toetrad2 enrdeti:‘]m Tomin;
off energy efficiency and learning performance. 4 T T

We consider the following three cases when we try to maké’
if 3p = (¢,r) € P s.t. ||l —c|| < r then
a decision on whether or not to reduce the sampling rate: 1) i )
; i : o IL_p — M(fi—1);
the user is at some place, which is not one of discovered Pols, ;
i . . 7 II; «+ M(ft)
the sampling rate should not be reduced since otherwise ther’ ™" '~ Loax max . max max
" ) . . a8 if e = e and |pitay — pite| < ax p"e% then
may not be sufficient samples for discovering this possibly
if 2T <Tyax then
new Pol. 2) If the user is at one of discovered Pols and the’ , X
10: T + 2T,
activity prediction isstable (explained below), the sampling
11 else
rate can be reduced. 3) If the user is at one of discoveréd , .
12: T T,
Pols, but the prediction result is not stable, the samplatg r .
13: end if
should not be reduced. .
14 end if
In our adaptive sampling algorithm, we make sure tha
15: end if
the sampling period falls in the range 6Fin, Timax]. We 16 retumn T
set the initial sampling period t@},i,,. Timin and Thac Were i ’
set to 5min and 20min respectively in our implementation.
Every time (say at timet) when a new feature tuple is
collected, the algorithm checks whether or not its locafion
falls in the radius of any discovered Pol. If so, the algarith
further employs the developed activity prediction modé|(-)
(described above) to predict his/her future activities stodes
the results tdl;. Then the algorithm compardd; with the
previous results to see if there is any significant change.
no, the sampling period is doubled, otherwise it remains theFirst of all, we present experimental results to validate
same as before. Herg"** (rM2X) and pi"®* (pi"2X) denote the proposed Pol discovery algorithm. We used the Google
the most likely activity and the corresponding probabilitfMaps to show the sensor samples and the corresponding
predicted according to the current samgle(the previous Pols. We conducted interviews with the volunteers and used
samplef,_7), respectivelyx is a threshold, which is used totheir descriptions about their lifestyles as ground trufiis
define the condition that triggers adjustment of the sargpligomparisons. Due to the space limitation, we only presedit an
period. The larger thex is, the more likely the sampling analyze results of Ms. A. Similar observations can be made
period will be increased. For all the other cases, the alyori for other volunteers.
stays with the minimum sampling period (i.Bmin in our Ms. A is a businesswoman living in the Great Boston area.
implementation). We formally present our adaptively sanmgpl Most of her activities happen in the region shown in Fig. 4(a)
algorithm as Algorithm 2. Note that the feature tuple (sahplAccording to her description, her home is located in area 1.
f,_1 collected at the last sampling instaht- 7" and the Across the river is a grocery store, where she usually goes
corresponding prediction resull$; _, are given as input. for grocery shopping. Area 2 is a small commercial district,
Note that since the Pol discovery algorithm depends avhere her company and several restaurants are located. On
the density of sensor samples, we need to duplicate sengeekdays, she usually leaves home and goes to work in the
samples to maintain the sample density if the sampling satenhorning. But occasionally, she needs to meet customers in
reduced by the adaptive sampling algorithm. We only dumgicaareas 3 and 4. She likes shopping very much. On weekends,
samples associated with Pols already discovered ther#ffere sometimes, she meets her friends and has breakfast together
duplication will not affect the discovery of Pols. area 5; sometimes, she meets her friends in Harvard Untiyersi
in area 6. Then they go shopping in areas 7 and 8. There is a
large mall in area 7, and area 8 is the downtown of Boston,
The field tests were conducted with a group of volunteers faere a lot of shops and restaurants are located. On weekdays
over1.5 months fromg cities in USA. During the experiments,she usually has lunch in the restaurants close to her company
all the volunteers used Android-based Nexus 4 or Nexus(h weekends, she usually goes to some restaurants in the
phones. To protect their identities, we use a single caleitedr downtown area.
as their names in the following. Sensors were first sampledThe periodically collected sensor samples and the Pols
every 5 minutes. In the last three days of experiments, wéscovered by our algorithm are shown in Fig. 4(a). From

started to apply the proposed lifestyle-aware adaptivepiam
algorithm to adaptively adjust the sampling rate, and in the
meanwhile, we still collected sensor samples every 5 minute
for comparisons.

Ah, Validation and Evaluation of Lifestyle Learning

V. VALIDATION AND PERFORMANCEEVALUATION
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Fig. 5. Cross-validation for prediction accuracy

factors may affect the prediction accuracy: 1) If a mobilerus
has a very regular schedule, and his/her daily life follows a
regular pattern, e.g., a college student, his/her a@witan be
predicted with high accuracy. Users D, I, J and N fall intthi
category. 2) If a mobile user has a quite flexible schedule in
his/her dalily life, it is hard to make accurate predictiofer
example, Mr. M is a senior Ph.D student without any course
work, so his schedule is quite flexible and his activities are
relatively hard to predict. 3) It is hard to predict the aitids

of a mobile user who travels often. For example, Mr. L is
an engineer, who often travels between cities for technical
support. The accuracy of prediction for his activities i¢ as
good as that for those who stay in a single city.

B. Evaluation of Adaptive Sampling

(b) Discovered Pols The proposed adaptive sampling algorithm was applied in
Fig. 4. Pol discovery for Ms. A the last three days of field tests. The threshaldvas set
to a relatively small value5%, during experiments. In this
) ) _ way, we can save sensing energy, while still preserving good
Fig. 4(b), we observe that the following places are disceterperformance of lifestyle learning. Suppose that the nurober
as Pols: 1) Ms. A's home and the grocery store near her ho@gnples collected by our adaptive sampling algorithm and by
in area 1; 2) her workplace and the restaurants that she "'fﬁe?iodical sampling (with the sampling period ®fin) are
to go to in area 2. 3) the customers’ sites in area 3 and 4; andn respectively. We chose to use the ratis” as the
4) Harvard University in area 6; and 5) the shopping mallerformance metric, which we cadinergy savingnratioThe
and restaurants in areas 7 and 8. We can also see that SegsResponding results are shown in Fig. 6. From the figure,
s_amples related to movements bgtween Pols are successiyllycan see that compared to periodic sampling, the proposed
filtered out by the proposed algorithm. adaptive sampling algorithm achieves an energy saving of

Next, we show the experimental results to justify the efo0; on average, with the maximum saving 8% and the
fectiveness of the proposed activity prediction algorithm minimum at40%.

the experiments, we aimed to predict activities in the riext

to 2 hours. To evaluate the activity prediction algorithm, we VI. RELATED WORK

chose to use the widely used cross-validation method [12].Comprehensive reviews for mobile phone sensing systems

We split all the training data randomly ini® disjoint sets. In and applications can be founded in [14] and [17].

each test9 of these training sets were used for training, and Research efforts have been made to analyze/presict nyobilit

the rest data set was used to test the accuracy of predictipatterns of mobile users based on locations of their mobile

Hence, a total ofl 0 tests were performed for each volunteephones. In an early work [10], the authors presented an

We show the results in Fig. 5. algorithm called BeaconPrint, which uses WiFi and GSM radio
From the figure, we can see the activity prediction algorithfimgerprints collected by someone’s personal mobile device

works well. Among all the volunteers, it predicts with arautomatically learn the places they go and then detect when

average of accuracy df2%, the lowest confidence &6% they return to those places. In [6], the authors built a model

and the highest &&9%. Moreover, we find out the following to identify the structure inherent in daily behaviors by firgl



100% presented a lifestyle-aware adaptive sampling algoritom f

00% improving energy efficiency. We implemented the proposed
80% system and algorithms based on the Android platform. We
70% have validated and evaluated LIPS via extensive field tests

60% carried out in 6 major cities of USA. The experimental result
50% showed that LIPS can 1) well discovers Pols of mobile users,
40% 2) precisely predict their future activities with an avezag
s0% accuracy of72%, and 3) achieve a significant energy saving
fg; of 52% on average (compared to periodic sampling).

0%

Energy saving ratio
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