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Abstract—In this paper, we propose to learn LIfestyles of
mobile users via mobile Phone Sensing (LIPS), and we develop
a system and algorithms to realize this idea. First, we present
the workflow and architecture of our system, LIPS. Combining
both unsupervised and supervised learning, we propose a hy-
brid scheme for lifestyle learning, which consists of two parts:
characterization and prediction. Specifically, we presenta two-
stage algorithm to characterize the lifestyle of a mobile user using
Places of Interest (PoIs), which leverages two different algorithms
for coarse-grained and fine-grained clustering in two stages
respectively. Based on discovered PoIs, we present a method
to build a model to predict his/her future activities using a
supervised classification algorithm. In addition, we present an
adaptive sampling algorithm for improving energy efficiency,
which leverages both the discovered PoIs and the lifestyle model
for adaptively controlling the sampling rate. We implemented
the proposed system and algorithms based on the Android
platform. We have validated and evaluated LIPS via extensive
field tests carried out for over 1.5 months in 6 cities of USA.
The experimental results show that LIPS can 1) well discover
PoIs of mobile users, 2) precisely predict their future activities,
and 3) achieve significant energy savings (compared to periodic
sampling).

Index Items: Mobile Computing, Mobile Phone Sensing,
Human-Centric Sensing, Energy Efficiency

I. I NTRODUCTION

A smartphone is usually equipped with a rich set of em-
bedded sensors such as camera, GPS, accelerometer, digi-
tal compass, gyroscope, and so on. External sensor(such as
Google Glass, Smart Watch, Fitbit, Sensordrone [19], etc.)can
be connected to the phone via its network interface (such as
Bluetooth). The sensors of a smartphone can easily detect the
context (such as location, local weather, activities, etc.) of its
mobile user.

In this paper, we propose to learn LIfestyles of mobile
users via mobile Phone Sensing (LIPS). According to busi-
nessdictionary.com,“Lifestyle is expressed in both work and
leisure behavior patterns and (on an individual basis) in
activities, attitudes, interests, opinions, values, and allocation
of income.” Our idea is to leverage multiple sensors on a
smartphone for obtaining a comprehensive view of the context
(such as location, local weather, activities, etc.) of a mobile
user over a long period, and to find out what a mobile
user likes to do (characterization) and what he/she will do
next (prediction) based on the collected sensor data. Such
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a lifestyle learning system can be used to support a large
variety of applications for improving life quality. For example,
a major application is to recommend local businesses to mobile
users based on not only his/her location but also his/her
lifestyle. This work represents one of the first efforts along
this line, which is focused on lifestyle learning, while leaving
lifestyle-aware recommendation or lifestyle-based applications
for future research.

We build a system, LIPS, to realize our idea. LIPS consists
of a mobile frontend and a learning server on the backend.
The mobile frontend can be implemented as a mobile app that
reports the context information collected by sensors of the
mobile phone to the learning server periodically. Based on this
information, the learning server builds models for lifestyles of
mobile users. Combining both unsupervised and supervised
learning, we propose a hybrid scheme for lifestyle learning,
which consists of two parts: characterization and prediction.
Specifically, we present a two-stage algorithm to characterize
the lifestyle of a mobile user using Places of Interest (PoIs),
which leverages two different algorithms for coarse-grained
and fine-grained clustering in two stages respectively. Based
on discovered PoIs, we present a supervised learning based
algorithm to build a model for predicting the future activities
of a mobile user.

In addition, operating smartphone sensors (such as GPS)
could be energy consuming. Even though some sensors (such
as accelerometer) are always active, a thread needs to be
spawned to collect its readings, which consumes energy too.
To enable green lifestyle learning, we present an adaptive
sampling algorithm, which adaptively controls the sampling
rate according to discovered PoIs and the lifestyle model.

We propose practical and effective solutions to fundamental
problems of lifestyle learning (learning and energy-efficient
sampling). Specifically, we summarize our contributions inthe
following:

• We present an effective hybrid scheme for lifestyle learn-
ing, which combines both unsupervised and supervised
learning.

• We present an energy-efficient sampling algorithm, which
leverages the discovered PoIs and the lifestyle model for
adaptively controlling the sample rate.

• We performed extensive field tests to validate and eval-
uate LIPS. The experimental results well justify the
effectiveness and efficiency of LIPS on lifestyle learning.

II. OVERVIEW OF LIPS

LIPS consists of two parts: mobile frontend and learning
server, as illustrated by Fig. 1. The mobile frontend is im-
plemented as a mobile app that runs on each mobile user’s
smartphone. The learning server, however, runs in the cloud.
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Fig. 1. The LIPS system

We can simply deploy multiple learning servers and load
balancers if we need to serve a large number of mobile users
from different locations.

In our design, a learning server is composed of an online
server and an offline modeler. The online server supports
a set of services for the mobile frontend, including login,
raw data processing, messaging, notification, etc. The offline
modeler, however, deals with lifestyle learning in the backend,
which includes running the clustering-based characterization
algorithm (Section III-A) and the supervised learning based
prediction algorithm (Section III-B) on collected sensor data.
The online server is designed to be light-weighted, which
provides immediate online responses to the mobile frontend.
However, lifestyle learning involves compute-intensive and
time-consuming workload, which can only be done in an
offline manner on powerful servers. This design ensures that
online requests from the mobile frontend are not delayed by
the time-consuming learning process.
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Fig. 2. The workflow of LIPS

We illustrate how the mobile frontend, the online server and
the offline modeler interact with each other and how LIPS
works in Fig. 2, which are further described in the following:
1) A mobile user registers for the lifestyle learning service

by sending his/her personal information along with his/her
preferences (e.g. only allowing coarse locations rather than
fine locations) to the online server.

2) The online server accepts (or rejects) the registration re-
quest and sends sensing scripts according to user prefer-
ences to the mobile frontend.

3) The mobile frontend collects the mobile user’s context
information (Section III) using mobile phone sensors pe-
riodically and sends sensor data to the online server, which

then stores them into a database. The mobile frontend
adaptively adjusts its sampling rate to trade off energy
efficiency and learning performance (Section IV).

4) The offline modeler periodically pulls sensor samples from
the database.

5) The offline modeler discovers PoIs and builds the lifestyle
model for activity prediction on a daily basis according to
received sensor samples. And, it updates the online server
with PoIs and lifestyle model.

6) The mobile frontend periodically sends a query with the
current context information (Section III) to the online
server. This query can also be sent in an ad-hoc manner.

7) The online server replies with the prediction results (Sec-
tion III-B).
We implemented the mobile frontend and the online server

for sensor data collection based on the SOR system [18] we
built before. Due to space limitation and similarity, we omit
details about them, which can be found at [18]. The offline
modeler consists of four modules: Data Pre-processor, PoI
Discover, Lifestyle Modeler and Place Information Provider.
The Data Pre-processor decodes binary raw data, based on
which numerical values (a.k.a feature data) will be generated
(Section III) and stored into the database as input for the PoI
Discover and the Lifestyle Modeler. The PoI Discover analyzes
each user’s feature data and discovers his/her Places of Interest
(PoIs), which will be described in details in Section III-A).
The Lifestyle Modeler builds a model for predicting future
activities of a mobile user based on discovered PoIs using
a supervised learning algorithm, which will be introduced in
details in Section III-B). The Place Information Provider is
used to retrieve the actual place (such as restaurant, coffee
shop, etc.) information given the location of a PoI, which will
be used for building the lifestyle model. In our system, we
used Google’s Place API [8] to obtain such information.

In addition, “sensor” has a much broader meaning in
LIPS, which refers to data source that can provide context
information of a mobile user. Therefore a sensor could be:
1) an embedded sensor (such as GPS, accelerometer, digital
compass, etc.) on a mobile phone; 2) a service that can
provide context information (such as local weather) to mobile
users via APIs; or 3) an external sensor (such as Fitbit and
Sensordrone [19]) that can be connected to a mobile phone
via its network interface (such as Bluetooth).

III. L IFESTYLE LEARNING

As described above, the goal of lifestyle learning is to find
out what a mobile user likes to do (characterization) and what
he/she will do next (prediction). Mobile phones are usually
carried by their users almost all the time, which make them
perfect devices for providing useful context information to
learn the lifestyle of mobile users. In LIPS,sensor samples
are collected periodically by the mobile frontend for lifestyle
learning. A sensor samples is defined by a 3-tuple(t, l,D),
where t is the timestamp,l is the location, andD is a set
of raw sensor readings that are used to produce feature data
(described below).



In LIPS, a list of features are extracted from a sensor
sample, which are then used as input for discovering of PoIs
of a mobile user (Section III-A) and for predicting his/her
activities (Section III-B):
1) Day and Time:the day (Monday, Tuesday, etc.) and the

time at the sampling instant. Note that both features are
very important since the period of many people’s lifestyles
is one week and usually their activities in a day are highly
time-dependent.

2) Location and Speed:the location and the moving speed at
the sampling instant, which are obtained via either GPS
(fine) or Google’s Location Services (coarse) according to
user’s preferences.

3) Moving State: {On-foot, Driving, Bicycling, Still, Un-
known}, which can be obtained by calling the activitity
recognition API [1] in the Google Play Services.

4) Step Frequency: the numbers of steps per second (if on-
foot). Each sensor sample includes10 continuous ac-
celerometer readings, which are then used to estimate the
step frequency using the method introduced in [2].

5) Weather Condition: {Sunny, Cloudy, Raining, Snowing},
which can be obtained by calling the REST Weather
Channel API [21].

6) Local Outdoor Temperature:the outdoor temperature at the
sampling instant and location, which can be obtained by
calling the REST Weather Channel API [21] too.

7) User State: {Active, Inactive}, which shows whether or not
the user is actively using the mobile phone. This can be
obtained by using the Android system API to check if any
app is launched in the past sampling period.
We select these features to build the lifestyle model because

we believe they may all have impacts on a mobile user’s
activities. For example, a mobile user usually goes to a
restaurant on Saturday night, however, if the weather happens
to be bad (e.g., snowing), he/she may decide not to go out.

A. Lifestyle Characterization with Places of Interests (PoIs)

In order to learn lifestyle of a mobile user, we first need
to know which places he/she likes to go, which, however, is
hard to tell simply based on a set of collected sensor samples
since some of them may be taken when he/she moves from
one place to another. We characterize the lifestyle of a user
using PoIs. A PoI is a place that a mobile user has visited,
which could be a grocery store, a shopping mall, a restaurant,
etc. Discovering PoIs for a mobile user is the first step of
lifestyle learning.

From our field-tests, we find that sensor samples have
the following two properties: 1) The set of collected sensor
samples contains both samples related to PoIs, and samples
corresponding to movements between PoIs, which may not
be relevant. 2) The number of PoIs can not be determined
beforehand.

Intuitively, we can apply a clustering algorithm to find
clusters based on collected samples, which can then be used
to identify desired PoIs. However, we find most existing
clustering algorithms are not suitable for our problem due

DBSCAN MeanShiftFeature tuples PoIs

1. Timestamp
2. Location
3. Moving State
4. Speed

1. Clusters found
    by DBSCAN
2. Location

Fig. 3. The PoI discovery algorithm

to the following reasons: 1) Those clustering algorithms that
require the number of clusters as input, such K-means [9],
are not suitable here, since the number of PoIs are not
known beforehand. 2) A naive approach, in which clusters
are determined simply based on the amount of time a user
stays in an area, is not applicable since a user may stay on
certain part of a road for a long time due to traffic jam. 3)
Clustering simply based on locations without taking time into
consideration, may lead to many false PoIs due to overlapping
samples collected over multiple days. 4) It is not reasonable
to determine whether a place is a PoI or not simply based on
a moving speed threshold. For example, a mobile user may
jog around a place (such as a park or a lake) with samples
evenly distributed around it. By just setting up a fixed speed
threshold for clustering, it may not be discovered as a PoI.
In summary, clustering should be done according to multiple
relevant features rather than a single feature.

Based on our observations, we design a two-stage algorithm
to discover PoIs from a set of sensor samples, which is
illustrated in Fig. 3. As described above, instead of directly
using raw sensor data, we extract useful information from
collected sensor samples to produce feature data as input.
We choose the DBSCAN [7] and MeanShift [5] algorithms
for coarse-grained and fine-grained clustering in the first and
second stage respectively. In the first stage, our main goal is
to filter out those samples related to movements between two
PoIs rather than actual PoIs. For each collected samples ∈ S,
we extract itstimestamp, location, moving state and moving
speedto build a feature tuplef = (t, l, a, v) ∈ F. The tuple
values are normalized in each feature dimension.

We feed those feature tuples into the DBSCAN algorithm
to produce a set of clusters. DBSCAN is a density-based
clustering algorithm, which ensures that the output clusters are
areas of high density while outside of the clusters are areas
of low density [7]. This is desirable for our problem since
DBSCAN can efficiently filter out those sparsely distributed
samples related to movements between PoIs. Moreover, we
perform clustering based on multiple features, which avoids
the potential issues related to single feature based clustering
described above. Specifically, we first perform DBSCAN
based on the feature tuples to discover a setC of clusters
C = {C1, · · · ,CN} from F. Then for each clusterCj ∈ C,
apply DBSCAN again to further divide this cluster into a set
of sub-clustersCj = {Cj,1, · · · ,Cj,M}. Note that for most
cases, one round of DBSCAN is sufficient, i.e., the second
round of DBSCAN will not be able to divide eachCj ∈ C

further into multiple smaller clusters. However, the second
round of DBSCAN is necessary in some cases. For example,



if a mobile user visits places in two different cities, only two
clusters (each corresponds to a city) will be returned afterthe
first round because DBSCAN does clustering based on the
density of samples. This is obviously too coarse so clustering
needs to be done again to improve granularity. After clustering
using the DBSCAN algorithm, we can have a set of clusters
of feature tuples. However, since DBSCAN is not a centroid-
based clustering algorithm, it does not return cluster centers,
which is what we need. In addition, we find that if multiple
PoIs are close to each other (e.g., multiple PoIs in a plaza),
the related feature tuples may be put into the same cluster. So
we still need to do fine-grained clustering following the first
stage.

In the second stage, we use the MeanShift algorithm on each
cluster found in the first stage. In this stage, only locations are
used for clustering. The MeanShift algorithm uses a similar
idea for clustering but can return cluster centers (if each cluster
has a convex shape) [5]. These cluster centers will then be
returned as the set of PoIs.

We formally present our PoI discovery algorithm as Algo-
rithm 1, in which the first stage starts from Step 3, and the
second stage starts from Step 8. We usec′i andr′i to denote the
center and the corresponding radius of clusterC′

i respectively.

Algorithm 1 The PoI Discovery Algorithm

Input: The set of feature tuplesF;
Output: The set of PoIsP;

1: P← ∅;
2: C← ∅;
3: {C1, · · · ,CN} ← DBSCAN(F);
4: for Cj ∈ {C1, · · · ,CN} do
5: {Cj,1, · · · ,Cj,M} ← DBSCAN(Cj);
6: C← C

⋃
{Cj,1, · · · ,Cj,M};

7: end for
8: for Ci,j ∈ C do
9: F′ ← ∅;

10: for f = (t, l, a, v) ∈ Ci,j do
11: F′ ← F′

⋃
{l};

12: end for
13: {C′

1
, · · · ,C′

n} ← MeanShift(F′);
14: P← P

⋃
{(c′

1
, r′

1
), · · · , (c′n, r

′

n)};
15: end for
16: return P

The output of this algorithm is a setP of PoIs (with
center locations and radii). Obviously, these locations cannot
be directly used to predict activities of the mobile users. In
LIPS, the Place Information Provider uses the Google Place
API [8] to find the actual places according to these locations.

B. Lifestyle Modeling for Activity Prediction

In this section, we describe how to predict a mobile user’s
activities in the nextT hours according to the discovered PoIs.
Note that PoIs tell us exactly which places the mobile user

visited. For a mobile user, PoIsp andp′ may be two different
restaurants he/she usually goes to, but they both correspond
to the same activity “dining”. So we are actually interestedin
knowing what kind of activities a mobile user will do in the
near future (rather than exactly which place he/she will visit)
such that we can provide related and useful information (such
as recommendation) to him/her.

In LIPS, we define a set of activities: mall shopping, din-
ing, grocery shopping, outdoor recreation, indoor recreation,
movie, gas station, car wash, exercise, laundry, library, and
schooling. This set can certainly be expanded according to
the new PoIs and needs. In addition, we need to map PoIs to
activities. We again use Google Place API to find the type of
each PoI. For example, given a hiking trail, it will return its
type as “park”. In LIPS, We then create a table to map each
type to certain activity. For example, if the type of a PoI is
“park”, its corresponding activity is “outdoor recreation”.

In order to build a lifestyle model for future activity
prediction. We need to have a training set, in which each
item is afeature-activitytuple(f ;π). f = (d, t, l, a, v, w, p, u),
whered is the day (Monday, Tuesday, etc.),t is the time,l is
the location,a is the moving state,v is the moving speed,w
is the weather condition,p is the outdoor temperature,u is the
user state (active or not); andπ is the associated activity. Note
that here the feature tuple includes all features discussedin the
beginning of this section, which is different from that intro-
duced in the previous section. In addition, we aim to predict
the activities in the nextTs to Te hours so when building the
training set, the activities need to be the activities discovered
in that future period. For example, suppose a feature tuple of
a mobile user, Alice, at 11:00AM isf , and we want to predict
her activities in the next 1 to 2 hours (i.e., between 12:00PM
and 1:00PM), and her activity during that period turned out be
“dining” according to some collected samples, then we will
add a feature-activity tuple(f , “dining”) into the training set.
Of course, if there were more than one activities, say “dining”
and ”indoor recreation” during that period, we will add both
(f , “dining”) and(f , “indoor-recreation”) into the training set.

After the training set is built, we can apply a supervised
classification algorithm [9] to make predictions. We testeda
few widely-used algorithms with the collected sensor data and
found that Support Vector Machines (SVM) [9] turns out to
be the most effective one. Moreover, it is known that SVM is
usually very effective in the high-dimensional spaces (many
features), fast and memory-efficient. So in LIPS, we employ
SVM to predict future activities of a mobile user. We chose
to use the Gaussian Radial Basis Function (RBF) kernel [9]
for high accuracy in our implementation. SVM can return a
model such that when given a feature tuple (as shown above)
of a mobile user, it can return the probability of each possible
activity he/she may perform in the future.

IV. L IFESTYLE-AWARE ADAPTIVE SAMPLING

On one hand, if the sampling rate is reduced (i.e., sampling
period is increased), energy spent for sensor data acquisition
and communications can certainly be reduced. Moreover, the



mobile phone system will have a much higher chance to enter
the sleep mode, which is known to consume much less energy
than the active mode does. On the other hand, reducing the
sampling rate may lead to less samples, which will have a
negative impact on the performance of PoI discovery and
activity prediction. Hence, we need to develop an effective
algorithm that adaptively adjusts the sampling rate to trade
off energy efficiency and learning performance.

We consider the following three cases when we try to make
a decision on whether or not to reduce the sampling rate: 1) If
the user is at some place, which is not one of discovered PoIs,
the sampling rate should not be reduced since otherwise there
may not be sufficient samples for discovering this possibly
new PoI. 2) If the user is at one of discovered PoIs and the
activity prediction isstable (explained below), the sampling
rate can be reduced. 3) If the user is at one of discovered
PoIs, but the prediction result is not stable, the sampling rate
should not be reduced.

In our adaptive sampling algorithm, we make sure that
the sampling period falls in the range of[Tmin, Tmax]. We
set the initial sampling period toTmin. Tmin andTmax were
set to 5min and 20min respectively in our implementation.
Every time (say at timet) when a new feature tuple is
collected, the algorithm checks whether or not its locationlt
falls in the radius of any discovered PoI. If so, the algorithm
further employs the developed activity prediction modelM(·)
(described above) to predict his/her future activities andstores
the results toΠt. Then the algorithm comparesΠt with the
previous results to see if there is any significant change. If
no, the sampling period is doubled, otherwise it remains the
same as before. Hereπmax

t (πmax

t−T ) and pmax

t (pmax

t−T ) denote
the most likely activity and the corresponding probability
predicted according to the current sampleft (the previous
sampleft−T ), respectively.α is a threshold, which is used to
define the condition that triggers adjustment of the sampling
period. The larger theα is, the more likely the sampling
period will be increased. For all the other cases, the algorithm
stays with the minimum sampling period (i.e.5min in our
implementation). We formally present our adaptively sampling
algorithm as Algorithm 2. Note that the feature tuple (sample)
ft−T collected at the last sampling instantt − T and the
corresponding prediction resultsΠt−T are given as input.

Note that since the PoI discovery algorithm depends on
the density of sensor samples, we need to duplicate sensor
samples to maintain the sample density if the sampling rate is
reduced by the adaptive sampling algorithm. We only duplicate
samples associated with PoIs already discovered thereforethe
duplication will not affect the discovery of PoIs.

V. VALIDATION AND PERFORMANCEEVALUATION

The field tests were conducted with a group of volunteers for
over1.5 months from6 cities in USA. During the experiments,
all the volunteers used Android-based Nexus 4 or Nexus 5
phones. To protect their identities, we use a single capitalletter
as their names in the following. Sensors were first sampled
every 5 minutes. In the last three days of experiments, we

Algorithm 2 Lifestyle-aware Adaptive Sampling Algorithm

Input: ft, ft−T , Πt−T , T ;
Output: T ′;

1: if ft−T = nil then
2: return Tmin;
3: end if
4: T ′ ← Tmin;
5: if ∃p = (c, r) ∈ P s.t. ‖lt − c‖ ≤ r then
6: Πt−T ←M(ft−T );
7: Πt ←M(ft);
8: if πmax

t−T = πmax

t and |pmax

t−T − pmax

t | < α ∗ pmax

t−T then
9: if 2 ∗ T ≤ Tmax then

10: T ′ ← 2 ∗ T ;
11: else
12: T ′ ← T ;
13: end if
14: end if
15: end if
16: return T ′;

started to apply the proposed lifestyle-aware adaptive sampling
algorithm to adaptively adjust the sampling rate, and in the
meanwhile, we still collected sensor samples every 5 minutes
for comparisons.

A. Validation and Evaluation of Lifestyle Learning

First of all, we present experimental results to validate
the proposed PoI discovery algorithm. We used the Google
Maps to show the sensor samples and the corresponding
PoIs. We conducted interviews with the volunteers and used
their descriptions about their lifestyles as ground truthsfor
comparisons. Due to the space limitation, we only present and
analyze results of Ms. A. Similar observations can be made
for other volunteers.

Ms. A is a businesswoman living in the Great Boston area.
Most of her activities happen in the region shown in Fig. 4(a).
According to her description, her home is located in area 1.
Across the river is a grocery store, where she usually goes
for grocery shopping. Area 2 is a small commercial district,
where her company and several restaurants are located. On
weekdays, she usually leaves home and goes to work in the
morning. But occasionally, she needs to meet customers in
areas 3 and 4. She likes shopping very much. On weekends,
sometimes, she meets her friends and has breakfast togetherin
area 5; sometimes, she meets her friends in Harvard University
in area 6. Then they go shopping in areas 7 and 8. There is a
large mall in area 7, and area 8 is the downtown of Boston,
where a lot of shops and restaurants are located. On weekdays,
she usually has lunch in the restaurants close to her company.
On weekends, she usually goes to some restaurants in the
downtown area.

The periodically collected sensor samples and the PoIs
discovered by our algorithm are shown in Fig. 4(a). From
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Fig. 4. PoI discovery for Ms. A

Fig. 4(b), we observe that the following places are discovered
as PoIs: 1) Ms. A’s home and the grocery store near her home
in area 1; 2) her workplace and the restaurants that she likes
to go to in area 2. 3) the customers’ sites in area 3 and 4;
4) Harvard University in area 6; and 5) the shopping malls
and restaurants in areas 7 and 8. We can also see that sensor
samples related to movements between PoIs are successfully
filtered out by the proposed algorithm.

Next, we show the experimental results to justify the ef-
fectiveness of the proposed activity prediction algorithm. In
the experiments, we aimed to predict activities in the next1
to 2 hours. To evaluate the activity prediction algorithm, we
chose to use the widely used cross-validation method [12].
We split all the training data randomly into10 disjoint sets. In
each test,9 of these training sets were used for training, and
the rest data set was used to test the accuracy of prediction.
Hence, a total of10 tests were performed for each volunteer.
We show the results in Fig. 5.

From the figure, we can see the activity prediction algorithm
works well. Among all the volunteers, it predicts with an
average of accuracy of72%, the lowest confidence at56%
and the highest at89%. Moreover, we find out the following

Fig. 5. Cross-validation for prediction accuracy

factors may affect the prediction accuracy: 1) If a mobile user
has a very regular schedule, and his/her daily life follows a
regular pattern, e.g., a college student, his/her activities can be
predicted with high accuracy. Users D, I, J and N fall into this
category. 2) If a mobile user has a quite flexible schedule in
his/her daily life, it is hard to make accurate predictions.For
example, Mr. M is a senior Ph.D student without any course
work, so his schedule is quite flexible and his activities are
relatively hard to predict. 3) It is hard to predict the activities
of a mobile user who travels often. For example, Mr. L is
an engineer, who often travels between cities for technical
support. The accuracy of prediction for his activities is not as
good as that for those who stay in a single city.

B. Evaluation of Adaptive Sampling

The proposed adaptive sampling algorithm was applied in
the last three days of field tests. The thresholdα was set
to a relatively small value,5%, during experiments. In this
way, we can save sensing energy, while still preserving good
performance of lifestyle learning. Suppose that the numberof
samples collected by our adaptive sampling algorithm and by
periodical sampling (with the sampling period of5min) are
n′ andn respectively. We chose to use the ration−n′

n
as the

performance metric, which we callenergy saving ratio. The
corresponding results are shown in Fig. 6. From the figure,
we can see that compared to periodic sampling, the proposed
adaptive sampling algorithm achieves an energy saving of
52% on average, with the maximum saving at63% and the
minimum at40%.

VI. RELATED WORK

Comprehensive reviews for mobile phone sensing systems
and applications can be founded in [14] and [17].

Research efforts have been made to analyze/presict mobility
patterns of mobile users based on locations of their mobile
phones. In an early work [10], the authors presented an
algorithm called BeaconPrint, which uses WiFi and GSM radio
fingerprints collected by someone’s personal mobile devices to
automatically learn the places they go and then detect when
they return to those places. In [6], the authors built a model
to identify the structure inherent in daily behaviors by finding



Fig. 6. Energy savings achieved by adaptive sampling

out the principal components (eigenbehaviors) in the data set
and representing an individuals behavior over a specific day
by a weighted sum of his/her primary eigenbehaviors. More
related works along this line can be found in [11], [16], [3],
[15]. Different from them, we aim to characterize and predict
activities of a mobile user based on not only his/her locations
but also many other features (such as weather and moving
state) that can be captured by his/her mobile phone. Moreover,
we address energy efficiency for data collection with model-
based adaptive sampling, which has not been done by them.

Another line of related work is to detect/recognize the mov-
ing states of a mobile user using mobile phone sensing. In [20],
the authors presented a framework for an Energy Efficient
Mobile Sensing System (EEMSS). EEMSS uses hierarchical
sensor management strategy to recognize user states as wellas
to detect state transitions. In [13], the authors describedand
evaluated a system that uses phone-based accelerometers to
perform activity recognition. A rather comprehensive review
on this topic can be found in a survey [4]. Unlike these works,
we aim at lifestyle learning with moving states of mobile
users as a feature, which we obtain using Google’s Activity
Recognition API [1].

In short, to the best of our knowledge, we are the first to
build a mobile phone sensing based system which energy-
efficiently collects features to learn and analyze lifestyles of
mobile users based on various context information (collected
from mobile phones).

VII. C ONCLUSIONS

In this paper, we presented a system, LIPS, and algorithms
to learn lifestyle based on mobile phone sensing. First, we
presented the workflow and architecture of LIPS. We proposed
a hybrid scheme for lifestyle learning, which consists of
two parts: characterization and prediction. Specifically,we
presented a two-stage algorithm to characterize the lifestyle
of a mobile user using PoIs, which leverages the DBSCAN
and MeanShift algorithms for coarse-grained and fine-grained
clustering in the first and second stages respectively. Based
on discovered PoIs, we developed a method to build a model
to predict his/her future activities using SVM. In addition, we

presented a lifestyle-aware adaptive sampling algorithm for
improving energy efficiency. We implemented the proposed
system and algorithms based on the Android platform. We
have validated and evaluated LIPS via extensive field tests
carried out in 6 major cities of USA. The experimental results
showed that LIPS can 1) well discovers PoIs of mobile users,
2) precisely predict their future activities with an average
accuracy of72%, and 3) achieve a significant energy saving
of 52% on average (compared to periodic sampling).
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