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Abstract—Crowdsourcing is an emerging paradigm where users
can have their tasks completed by paying fees, or receive rewards
for providing service. A critical problem that arises in current
crowdsourcing mechanisms is how to ensure that users pay or
receive what they deserve. Free-riding and false-reporting may
make the system vulnerable to dishonest users. In this paper, we
design schemes to tackle these problems, so that each individual
in the system is better off being honest and each provider prefers
completing the assigned task. We first design a mechanism EFF
which eliminates dishonest behavior with the help from a trusted
third party for arbitration. We then design another mechanism
DFF which, without the help from any third party, discourages
dishonest behavior. We prove that EFF eliminates free-riding and
false-reporting, while guaranteeing truthfulness, transaction-wise
budget-balance, and computational efficiency. We also prove that
DFF is semi-truthful, which discourages dishonest behavior such
as free-riding and false-reporting when the rest of the individuals
are honest, while guaranteeing transaction-wise budget-balance
and computational efficiency. Performance evaluation shows that
within our mechanisms, no user could have a utility gain by
unilaterally being dishonest.

Index Terms—Crowdsourcing, free-riding, false-reporting, game
theory, incentive mechanisms.

1. INTRODUCTION

A. Crowdsourcing

For the past few years, we have witnessed the proliferation of
crowdsourcing [16] as it becomes a booming online market
for labor and resource redistribution. One example is mobile
crowdsourcing [25, 34], which leverages a cloud computing
platform for recruiting mobile users to collect data (such as
photos, videos, mobile user activities, etc) for applications
in various domains such as environmental monitoring, social
networking, healthcare, transportation, etc. Several commercial
crowdsourcing websites, such as Yelp [1], Yahoo! Answers [2],
Amazon Mechanical Turk [3], and UBER [4], provide trad-
ing markets where some users (service requesters) can have
their tasks completed by paying fees, and some other users
(service providers) can receive rewards for providing service.
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An important functionality of these websites is to empower
platforms not only to offer markets for laboring and resource
redistribution, but also to help decide fair prices for all providers
and requesters.

In general, a requester would post a task on one of these
platforms, and wait till some provider to work on it. To incen-
tivize providers for their service, the requester needs to offer a
certain reward. A provider will get reward as compensation for
its cost of completing the task.

B. Auction Theory

Auction is an efficient mechanism for trading markets, with its
advantage in discovering prices for buyers and sellers. Auctions
involving the interactions among multiple buyers and multiple
sellers are called double auctions [12]. When determining
payments for buyers and sellers, it is always feared that the
prices are manipulated to make the free market vulnerable to
dishonest individuals. Therefore, several economic properties,
such as truthfulness, individual rationality, budget-balance, and
computational efficiency, are desired. Here are the definitions
of these properties:
• Truthfulness: An auction is truthful if no individual can

achieve a higher utility by reporting a value deviating from
its true valuation (or cost) regardless of the bids (or asks)
from other individuals.

• Individual Rationality: An auction is individually rational
if for any buyer or seller, it will not get a negative utility
by revealing its true valuation (or cost).

• Budget-balance: An auction is budget-balanced if the
auctioneer always makes a non-negative profit.

• Computational Efficiency: An auction is computationally
efficient if the whole auction process can be conducted
within polynomial time.

Among these properties, truthfulness is the crowning jewel
which incentivizes all participants to be honest during the
auction [5, 11, 19, 27, 34, 37]. However, this alone cannot
guarantee the robustness of the mechanism, since other dis-
honest behavior, such as free-riding and false-reporting (to be
defined later), may make the crowdsourcing system vulnerable.

C. Free-riding and False-reporting in Crowdsourcing

Truthfulness of an auction can prevent individuals benefit from
lying about the prices. However, this alone is not adequate.
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Free-riding and false-reporting can make the mechanism vul-
nerable to dishonest users.

If the payment is made before the provider starts to work,
a provider always has the incentive to take the payment and
devote no effort to complete the task, which is known as
“free-riding” [36]. If the payment is made after the provider
completes its work, the requester always has the incentive to
refuse the payment by lying about the status of this task, which
is known as “false-reporting” [36]. Thus, extra precautions
are necessary. Most recent works [10, 15, 36] are focused
on avoiding free-riding and false-reporting by building up
reputation systems or grading systems. These mechanisms may
discourage such dishonest behavior overall, but based on the
assumption that all individuals are patient and they would stay
in the system. However, in reality, some dishonest individuals
may stay in the system for a short period of time, and get huge
rewards by being dishonest. In addition, impatient users may
leave the platform since they feel unsafe and being cheated.

In this paper, we tackle free-riding and false-reporting by
a game-theoretic approach, such that free-riding and false-
reporting are eliminated or discouraged.

D. Game Theory Basics

Game theory [23] is a field of study where interactions among
different players are involved. Each player wants to maximize
its own utility, which depends on not only its own strategies, but
also other players’ strategies. We need the concept of dominant
strategy and Nash Equilibrium [24] as follows.
• Dominant Strategy: A strategy s dominates all other

strategies if the payoff to s is no less than the payoff to any
other strategy, regardless of the strategies chosen by other
players. s is a strongly dominant strategy if its payoff is
strictly larger than the payoff to any other strategy.

• Nash Equilibrium (NE): When each player has chosen a
strategy and no player can benefit by unilaterally changing
its strategy, the current set of strategies constitutes an NE.

Extensive-form game theory [23] is an important branch
of game theory. An extensive-form game is a game where
sequencing players’ strategies and their choices at each deci-
sion point is allowed. The corresponding equilibrium, which
is called Sub-game Perfect Equilibrium (SPE), is a strategy
profile where in every sub-game, an NE is reached by the
corresponding subset of strategies.

E. Summary of Contributions

In this paper, we design two novel auction-based mechanisms,
EFF and DFF, to avoid free-riding and false-reporting, while
incentivizing providers to complete their assigned tasks. These
mechanisms are based on any existing truthful double auction
scheme for winner selection and pricing. Each auction winner is
required to submit a warranty first, then submit a report on the
status of the corresponding task. Based on these reports from
providers and requesters, the final payments are determined by
the platform.

The main contributions of this paper are the following:
• To the best of our knowledge, we are the first to solve

free-riding and false-reporting in each single round.
• We design a mechanism EFF, which, with the help of

arbitrations, eliminates free-riding and false-reporting, and
incentivizes providers to complete their assigned tasks. We
also prove that EFF is truthful, transaction-wise budget-
balanced, and computationally efficient.

• We design a mechanism DFF, which, without any ar-
bitration, discourages individuals from being dishonest.
We prove that DFF is semi-truthful, which means that
no individual could have a higher utility by lying when
others are honest. We also prove that DFF is transaction-
wise budget-balanced and computationally efficient, while
incentivizing providers to finish their assigned tasks.

The remainder of this paper is organized as follows. In Sec-
tion 2, we briefly review the current literature on crowdsourcing
mechanisms, truthful auctions, and mechanisms avoiding free-
riding and false-reporting. In Section 3, we describe the system
model. We present and analyze EFF and DFF in Section 4 and
Section 5, respectively. We present performance evaluation in
Section 6 and draw our conclusions in Section 7.

2. RELATED WORK

Many incentive mechanisms have been proposed for crowd-
sourcing and mobile sensing [5, 6, 9, 11, 17, 20, 26, 27, 31,
32, 34, 37]. In 2012, Yang et al. [34] studied two models:
user-centric and platform-centric models. For the user-centric
model, an auction-based mechanism is presented, which is
computationally efficient, individually rational, profitable, and
truthful. For the platform-centric model, the Stackelberg game
is formulated and the unique Stackelberg Equilibrium is cal-
culated to maximize the platform utility. In [9], DiPalantino
and Vojnovic proposed an all-pay auction, where each provider
may choose the job that it wants to work on. In [17], an online
question and answer forum was introduced, where each user
has a piece of information and can decide when to answer
the question. Singla and Krause in [27] proposed BP-UCB,
which is an online truthful auction mechanism achieving near-
optimal utilities for all providers. A crowdsourcing Bayesian
auction is proposed in [5], where the system is aware of the
distribution of valuations of all users. With this assumption, two
techniques were applied to the new Bayesian optimal auction
with high system performance. Zhao et al. [37] proposed
an online truthful auction for crowdsourcing with a constant
approximation ratio with respect to the platform utility. In [11],
a truthful auction algorithm of task allocation to optimize the
total utility of all smartphone users was proposed by Feng et al.
for the offline model, and an online model was also introduced
which reaches a constant approximation ratio of 1

2 .
Many other truthful auctions also fit for crowdsourcing and

mobile sensing. There are two basic truthful double auctions,
VCG [7, 14, 28] and McAfee [21], from which most of the
current truthful auctions are derived. Along this line, many
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mechanisms [8, 13, 18, 19, 22, 29, 33] are proposed. While
they are not specifically designed for crowdsourcing platforms,
they can be applied to the scenario with minor modifications.

These auction schemes are based on the assumption that all
providers will complete the assigned tasks, and all requesters
are satisfied with the status of the tasks. This may not al-
ways happen. Therefore, there are works focusing on how
to make the mechanism robust against free-riding and false-
reporting [10, 15, 36]. In these papers, free-riding and false-
reporting are avoided by building reputation systems or grading
systems. Such systems are based on the assumption that all
individuals are patient and will stay in the system for a very
long time. Thus, a user may gain extra benefit by free-riding or
false-reporting during a short period of time. Impatient users
may feel being cheated and turn to other platforms.

3. SYSTEM MODEL

In this section, we present the crowdsourcing model and the
corresponding double auction model, and define the utilities
for the platform, the providers, and the requesters.

There is a set of m requesters R = {R1, R2, ..., Rm}. For
each Ri, it requires service to complete its task Ti, which has
a private valuation vi > 0 to Ri if Ti is completed. Ti is
tagged with a bid bi by Ri, which is the maximum reward
that Ri is willing to pay for the completion of Ti. Note that
bi is not necessarily equal to vi. We define the bid vector b =
(b1, b2, ..., bm).

There is a set of n providers P = {P1, P2, ..., Pn}. Each
provider Pj has a cost cij > 0 to complete Ti, where cij is set to
+∞ if Pj is unable to complete Ti. Pj would post an ask aij for
Ti, which is the minimum amount of reward that Pj demands
for completing Ti. Note that aij is not necessarily equal to cij .
We define the cost vector cj = (c1j , c

2
j , ..., c

m
j ), the ask vector

aj = (a1j , a
2
j , ..., a

m
j ), and the ask matrix A = (a1;a2; ...;an).

We assume that providers and requesters are non-colluding.
By applying a sealed-bid single-round double auction where
requesters are buyers and providers are sellers, we get a set W
of winning requester-provider pairs, such that (Ri, Pj) ∈ W
if and only if Pj is assigned to complete Ti. Each provider is
assigned to at most one task, while no more than one provider
works on each task. We define the function δ(·) : P → R such
that δ(j) = i if and only if (Ri, Pj) ∈ W , and δ(j) = 0 if
Pj is not assigned to any task. As a result of the auction, Ri
will be charged βi, and Pj will receive αδ(j)j . As a technical
convention, we define βi = 0 if Ri is not a winning requester,
and αij = 0 if (Ri, Pj) /∈ W . We define β = (β1, β2, ..., βm),
αj = (α1

j , α
2
j , ..., α

m
j ), and α = (α1;α2; ...;αn). The platform

(auctioneer) has a profit Σ(Ri,Pj)∈W(βi−αij) from the auction.
The auction mechanism, denoted as M, takes the bid vector b

and the ask matrix A as input. M outputs the winning requester-
provider pair set W and the payments α and β. Thus, we have
(W, β, α)←M(b,A).

We call an auction mechanism M transaction-wise budget-
balanced if βi ≥ αij , for each (Ri, Pj) ∈ W . Note that
transaction-wise budget-balance implies budget-balance, i.e.,

∑
(Ri,Pj)∈W(βi − αij) ≥ 0. Throughout this paper, we as-

sume that M is truthful, individually rational, transaction-wise
budget-balanced, and computationally efficient. All mecha-
nisms in [8, 18, 29, 31, 33] satisfy these properties. In particular,
TASC [33] is used in our implementation.

For each (Ri, Pj) ∈ W , the platform collects warranties
from both Ri and Pj . We model the post-auction process as
an extensive-form game between Pj and Ri. In this game,
Pj first decides the effort towards completing Ti; then Ri
and Pj evaluate the result and submit independent reports
on the status of Ti to the platform. We assume that Pj is
capable of completing Ti, hence the status of Ti depends on the
willingness of Pj . The reports are either C, which is short for
Completed, or I, which is short for Incomplete. Both Ri and
Pj know the status of Ti. However, the platform is not aware
of Ti’s status. The platform decides the final payment for each
individual according to these reports. If Ri and Pj submit the
same report, the platform would believe that both of them are
telling the truth. Otherwise, the platform concludes that one of
them lies and consults for arbitration if available. We assume
that there are no ambiguities on the status of Ti.

The utility of Ri is defined as

URi = xivi − (wRi − β̄i), (3.1)

where xi is the indicator of the status of Ti: xi = 1 if Ti is
completed; xi = 0 otherwise. wRi is the warranty that Ri pays
to the platform, and β̄i is the final payment that Ri receives
from the platform after the platform collects the reports.

The utility of Pj is defined as

UPj = (ᾱ
δ(j)
j − wPj )− yδ(j)j c

δ(j)
j , (3.2)

where yδ(j)j is the indicator of Pj’s devotion on Tδ(j): y
δ(j)
j = 1

if Pj worked on Tδ(j); y
δ(j)
j = 0 otherwise. wPj is the warranty

from Pj , and ᾱ
δ(j)
j is the final amount that Pj receives from

the platform after the platform collects the reports.
The platform utility is defined as

U =
∑

(Ri,Pj)∈W
[(wRi − β̄i + (wPj − ᾱδ(j)j )− ziτi], (3.3)

where zi is the indicator of arbitration on Ti: zi = 1 if the
platform has consulted for arbitration on Ti; zi = 0 otherwise.
τi is the corresponding arbitration fee. We assume that τi is a
value known by all providers, requesters, and the platform. For
each (Ri, Pj) ∈ W , we define

U(Ri, Pj) = (wRi − β̄i) + (wPj − ᾱδ(j)j )− ziτi, (3.4)

which is the portion of platform utility contributed by (Ri, Pj).
Clearly, U =

∑
(Ri,Pj)∈W U(Ri, Pj).

Remark 3.1: The utilities of providers, requesters, and the
auctioneer in this paper are different from those in [35]. Another
difference between this paper and [35] is that we model the
post-auction process into an extensive-form game, in contrast
to a simultaneous game. 2

The notations of this paper are summarized in Table 1.
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TABLE 1
NOTATIONS

Symbol Meaning

Ri, Pj provider (seller), requester (buyer)
R, P the set of providers, requesters
Ti Ri’s task
vi valuation of Ti
b/bi bid vector/ bid from Ri
cj/c

i
j cost vector of Pj/ cost of Pj to finish Ti

A/aj/a
i
j ask matrix/ ask vector of Pj/ ask of Pj to finish Ti

W set of winning provider-requester pairs
δ(·) assignment function from providers to requesters
βi payment of Ri from the auction
β payment vector for requesters from the auction
αij payment of Pj for Ti from the auction
αj payment vector of Pj from the auction
α payment matrix of providers from the auction
M the auction mechanism
URi /U

P
j /U utility of Ri/ Pj/ the platform

xi indicator of Ti’s status
y
δ(j)
j indicator of Pj ’s devotion on Tδ(j)
zi indicator of arbitration on Ti
τi arbitration fee of Ti
β̄i final payment that Ri receives from the platform
ᾱ
δ(j)
j final payment that Pj receives from the platform

4. EFF: ELIMINATING FREE-RIDING AND

FALSE-REPORTING WITH ARBITRATION

In this section, we present a crowdsourcing mechanism EFF,
which, with the help from a trusted third party for arbitration,
eliminates free-riding and false-reporting and incentivizes each
provider to complete the assigned task.

A. Description of EFF

In EFF, a trustworthy third party is available, who can provide
arbitration on the status of Ti with an arbitration fee τi > 0.

The first part of EFF applies auction M, whereW , β, and α
are decided. After the auction, the platform collects a warranty
wRi = βi + τi from Ri and a warranty wPj = θαij + τi from
Pj for each (Ri, Pj) ∈ W , where θ > 0 is a system parameter.
We use θαij to help incentivize Pj to complete Ti. If Pj has
been assigned to work on Ti but does not complete Ti, it will
receive a penalty of θαij .

After Ri and Pj submitted their warranties, an extensive-
form game is applied. Pj decides whether or not to work on
Ti. If Pj chooses to devote effort on Ti, Ti would be completed.
Otherwise, Ti is incomplete with no effort devoted by Pj . Then
Ri and Pj submit their independent reports on the status of Ti.
Gathering the reports from Ri and Pj , the platform decides
the final payments β̄i and ᾱij for Ri and Pj , respectively. The
formal description of EFF is presented as Algorithm 1.

With the payments β̄i and ᾱij from Algorithm 1, utilities
of Ri and Pj can be computed based on equations (3.1) and
(3.2), respectively. These utility values are shown in Table 2.
The first row indicates Pj’s effort on Ti and the second row
lists the reports from Pj . The first column lists the reports from

Algorithm 1: EFF
1 (W, β, α)←M(b,A);
2 ∀(Ri, Pj) ∈ W, wRi ← τi + βi, w

P
j ← τi + θαij ;

3 Ri submits wRi and Pj submits wPj to the platform;
4 β̄i ← wRi ; ᾱij ← wpj ;
5 Pj decides whether or not to work on Ti, and devotes the

corresponding effort;
6 Ri and Pj submit independent reports on the status of Ti

to the platform;
7 if Reports are different then
8 The platform consults arbitration for the status of Ti,

and pays τi to the arbitrator;
9 if Ri submits a false report then

10 β̄i ← β̄i − τi;
11 else
12 ᾱij ← ᾱij − τi;
13 end

// The arbitration fee is taken from
the liar

14 else
15 The platform adopts the reports from Ri and Pj ;
16 end
17 if The platform concludes that Ti is completed then
18 β̄i ← β̄i − βi; ᾱij ← ᾱij + αij ;

// The auction payment is made
19 else
20 ᾱij ← ᾱij − θαij ;

// θαij is taken from Pj for not
completing Ti

21 end
22 The platform returns β̄i to Ri and ᾱij to Pj , respectively.

Ri. For each of the 2-tuples, the first element is the utility of
Ri, and the second element is the utility of Pj .

We pick two entries in Table 2 and explain how the corre-
sponding utilities are derived. First, we explain the entry where
Ti is completed and both Ri and Pj submit C (marked in red
in Table 2). In Line 2 of Algorithm 1, we have wRi = τi + βi
and wPj = τi + θαij . In Line 4, we have β̄i = τi + βi and
ᾱij = τi+θα

i
j . Because both Ri and Pj submit C, no arbitration

is consulted, and the platform concludes that Ti is completed.
Thus, β̄i = (τi + βi) − βi = τi. Since Pj has devoted effort
on Ti and Ti is completed, we have yij = 1 and xi = 1. In
Line 18, we have ᾱij = (τi + θαij) + αij . Based on equations
(3.1) and (3.2), Ri’s utility is vi−βi and Pj’s utility is αij−cij .
Next, we explain the entry where Ti is incomplete, Ri submits
I, and Pj submits C (marked in blue in Table 2). In Line 2,
we have wRi = τi + βi and wPj = τi + θαij . In Line 4, we
have β̄i = τi + βi and ᾱij = τi + θαij . Because Ri and Pj
submit different reports, an arbitration is consulted and the
arbitration result indicates that Pj submits the dishonest report.
In Line 12, we have ᾱij = (τi + θαij)− τi = θαij . Because Ti
is incomplete, we have yij = 0, xi = 0. In Line 20, we have
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TABLE 2
UTILITIES OF Ri AND Pj IN EFF FOR (Ri, Pj) ∈ W , THE ENTRY FOR THE UNIQUE SPE IS MARKED BY X.

Ri

Pj Ti completed Ti not completed
C I C I

C (vi − βi, αij − cij)X (vi − βi, αij − cij − τi) (−βj , αij) (−τi,−θαij)
I (vi − βi − τi, αij − cij) (vi,−θαij − cij) (0,−θαij − τi) (0,−θαij)

ᾱij = θαij − θαij = 0. Based on equations (3.1) and (3.2), Ri’s
utility is 0 and Pj’s utility is −θαij − τi.

According to Table 2, there is a unique SPE. If Pj completes
Ti, Pj would report C regardless of what Ri reports. Since
Pj reports C, Ri prefers reporting C to reporting I. Hence, if
Pj completes Ti, both Ri and Pj would report C. For similar
reason, if Pj does not complete Ti, both Ri and Pj would report
I. Comparing the utilities of Pj when completing Ti (which is
αij − cij > 0) and not completing Ti (which is −θαij < 0), Pj
prefers completing Ti. Thus, the unique SPE is reached when
Pj completes Ti, and both Ri and Pj submit C.

B. Analysis of EFF
In this subsection, we prove several properties of EFF.

Theorem 1: EFF eliminates free-riding and false-reporting,
while guaranteeing truthfulness, transaction-wise budget-
balance, and computational efficiency. 2

To prove this theorem, we need to prove lemmas 4.1-4.3.
Recall that auction M is individually rational, transaction-wise
budget-balanced, computationally efficient, and truthful.

Lemma 4.1: EFF eliminates free-riding and false-reporting,
while guaranteeing truthfulness. 2

Proof: Suppose that (Ri, Pj) is inW when Ri bids vi and
Pj bids cj . The unique SPE is achieved when Pj completes
Ti and both Ri and Pj submit C. According to Table 2 and
the individual rationality of M, Ri’s utility is vi − βi ≥ 0
and Pj’s utility is αij − cij ≥ 0. When Ri or Pj changes
its bid during the auction, due to the truthfulness of M, the
corresponding payment of Ri could not be lower than βi
and the corresponding payment of Pj could not be higher
than αij . Thus, neither Ri nor Pj has incentive to change its
bid. When Ri submits I for false-reporting, Pj still reports
C since it is Pj’s dominant strategy when Ti is completed.
Ri’s corresponding utility would be vi − βi − τi < vi − βi.
When Pj chooses not to complete Ti but submits C for free-
riding, Ri still reports I since it is Ri’s dominant strategy
when Ti is incomplete. Pj’s corresponding utility would be
−θαij − τi < 0 ≤ αij − cij . Thus, neither Ri nor Pj could
benefit from being dishonest.

Suppose that Ri loses the auction by bidding bi = vi. Its
utility is 0. Suppose that Ri changes its bid. If Ri still loses
the auction, its utility remains to be 0. If Ri wins the auction,
its new payment in the auction βi is no smaller than vi since M
is truthful. If Ti is completed, according to Table 2, Ri’s utility
is no more than vi − βi ≤ vi − bi = 0 since Pj would always
report C. If Ti is incomplete, Ri could not have a positive
utility. Thus, Ri could not benefit from being dishonest.

Suppose that Pj loses the auction by asking aj = cj . Its
utility is 0. Suppose that Pj changes its ask. If Pj still loses
the auction, its utility remains to be 0. If Pj wins the auction
and is assigned to complete Ti, Pj’s new payment in the auction
αij is no larger than cij since M is truthful. If Pj completes Ti,
according to Table 2, its utility is no larger than αij − cij ≤
aij − cij = 0. If Pj does not complete Ti, its utility is no more
than −θαij ≤ 0 since Ri would report I. Thus, Pj could not
benefit from being dishonest.

To sum up all cases, EFF eliminates free-riding and false-
reporting, while guaranteeing truthfulness.

Remark 4.1: By Lemma 4.1, dishonest behaviors are elim-
inated in EFF. According to the unique SPE in the extensive-
form game in EFF, for each (Ri, Pj) ∈ W , Pj would finish Ti,
which indicates that EFF incentivizes each winning provider
to complete its assigned task. 2

Lemma 4.2: EFF is transaction-wise budget-balanced. 2

Proof: Note that by the transaction-wise budget-balance of
M, βi − αij ≥ 0 for each (Ri, Pj) ∈ W . We prove this lemma
by the following case analysis:
• If Ri and Pj both submit C, the platform believes that Ti

is completed without consulting for arbitration. Thus, we
have β̄i = τi and ᾱij = τi + (1 + θ)αij . By equation (3.4),
we have U(Ri, Pj) = βi − αij ≥ 0.

• If Ri and Pj both submit I, the platform believes that Ti
is incomplete without consulting for arbitration. Thus, we
have β̄i = τi + βi and ᾱij = τi. By equation (3.4), we
have U(Ri, Pj) = θαij ≥ 0.

• If Ri submits C and Pj submits I when Ti is completed,
the platform consults for arbitration, and the result shows
that Pj lies in the report. Thus, we have β̄i = τi + βi and
ᾱij = (1 + θ)αij . By equation (3.4), we have U(Ri, Pj) =
βi − αij ≥ 0.

• If Ri submits C and Pj submits I when Ti is incomplete,
the platform consults for arbitration, and the result shows
that Ri lies in the report. Thus, we have β̄i = βi and ᾱij =
τi. By equation (3.4), we have U(Ri, Pj) = θαij ≥ 0.

• If Ri submits I and Pj submits C when Ti is completed,
the platform consults for arbitration, and the result shows
that Ri lies in the report. Thus, we have β̄i = 0 and ᾱij =
τi + (1 + θ)αij . By equation (3.4), we have U(Ri, Pj) =
βi − αij ≥ 0.

• If Ri submits I and Pj submits C when Ti is incomplete,
the platform consults for arbitration, and the result shows
that Pj lies in the report. Thus, we have β̄i = τi + βi and
ᾱij = 0. By equation (3.4), we have U(Ri, Pj) = θαij ≥ 0.

Thus, EFF is transaction-wise budget-balanced.
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Lemma 4.3: EFF is computationally efficient. 2

Proof: Since M is computationally efficient, and report
submission, arbitration, and pricing all take constant time, EFF
is computationally efficient.

Lemmas 4.1-4.3 complete the proof for Theorem 1.
Remark 4.2: EFF is not individually rational. To incen-

tivize each winning provider to complete its assigned task, we
impose a penalty θαij in Algorithm 1, Line 20. If Pj fails to
complete Ti but behaves honestly, its utility is −θαij < 0, which
violates individual rationality. However, this incentivizes Pj to
complete the task. This part differs from that in [35], where no
such penalty is imposed and individual rationality is achieved.
2

5. DFF: DISCOURAGING FREE-RIDING AND

FALSE-REPORTING WITHOUT ARBITRATION

EFF successfully eliminates free-riding and false-reporting
with the help from a trusted third party for arbitration. However,
it is not true that an arbitration is always available. In this
section, we present another mechanism DFF, which, without
any arbitration, discourages free-riding and false-reporting,
while still guaranteeing several economic properties.

A. Description of DFF
Same as EFF, the first part of DFF applies the auction M. For
each (Ri, Pj) ∈ W , DFF collects a warranty wRi = (1 + ζ)βi
from Ri and a warranty wPj = (ζ + η)αij from Pj , where
ζ > 0 and η > 0 are system parameters. In DFF, we use ζ to
help discourage dishonest behavior, and η to help incentivize
providers to complete their assigned tasks.

After the auction, Ri and Pj pay their warranties to the
platform. We model the post-auction part of DFF as another
extensive-form game. Pj first decides whether or not to work on
Ti, and devotes the corresponding effort. Then both Ri and Pj
submit their independent reports on the status of Ti. With the
reports from Ri and Pj , the platform decides the final payments
β̄i and ᾱij for each of the following cases:
• When Ri and Pj both submit C, we have β̄i = ζβi and
ᾱij = (ζ + η)αij + αij . This means that Ri pays βi to the
platform and Pj receives αij from the platform.

• When Ri and Pj both submit I, we have β̄i = (1 + ζ)βi
and ᾱij = ζαij . This means that Ri pays nothing to the
platform and Pj pays ηαij to the platform.

• When Ri submits C and Pj submits I, we have β̄i = ζβi
and ᾱij = ζαij . This means that Ri pays βi to the platform
and Pj pays ηαij to the platform.

• When Ri submits I and Pj submits C, we have β̄i = 0
and ᾱij = 0. This means that Ri pays (1 + ζ)βi to the
platform and Pj pays (ζ + η)αij to the platform.

The formal description of DFF is presented as Algorithm 2.
Based on the final payments β̄i and ᾱij from Algorithm 2,

utilities of Ri and Pj can be computed based on equations
(3.1) and (3.2), respectively. These utility values are shown in

Algorithm 2: DFF
1 (W, β, α)←M(b,A);
2 ∀(Ri, Pj) ∈ W, wRi ← (1 + ζ)βi, w

P
j ← (ζ + η)αij ;

3 Ri submits wRi and Pj submits wPj to the platform;
4 β̄i ← wRi ; ᾱij ← wpj ;
5 Pj decides whether or not to work on Ti, and devotes the

corresponding effort;
6 Ri and Pj submit independent reports on the status of Ti

to the platform;
7 if (Both Ri and Pj submit C) then
8 β̄i ← β̄i − βi; ᾱij ← ᾱij + αij ;
9 else if (Both Ri and Pj submit I) then

10 ᾱij ← ᾱij − ηαij ;
11 else if (Ri submits C and Pj submits I) then
12 β̄i ← β̄i − βi; ᾱij ← ᾱij − ηαij ;
13 else
14 β̄i ← β̄i − (1 + ζ)βi; ᾱij ← ᾱij − (ζ + η)αij ;
15 end
16 The platform returns β̄i to Ri and ᾱij to Pj , respectively.

Table 3. Notations in Table 3 represent similar meanings as
those in Table 2.

We pick two entries and explain how the corresponding
utilities are derived. First, we explain the entry where Ti is
completed and both Ri and Pj submit C (marked in red in
Table 3). In Line 2 of Algorithm 2, we have wRi = (1 + ζ)βi
and wPj = (ζ + η)αij . In Line 4, we have β̄i = (1 + ζ)βi and
ᾱij = (ζ + η)αij . Because both Ri and Pj submit C, in Line 8,
we have β̄i = (1 + ζ)βi − βi = ζβi and ᾱij = (ζ + η)αij + αij .
Since Pj has devoted effort on Ti and Ti is completed, we have
yij = 1 and xi = 1. Based on equations (3.1) and (3.2), Ri’s
utility is vi−βi and Pj’s utility is αij−cij . Next, we explain the
entry where Ti is incomplete, Ri submits I, and Pj submits C
(marked in blue in Table 3). In Line 2, we have wRi = (1+ζ)βi
and wPj = (ζ + η)αij . In Line 4, we have β̄i = (1 + ζ)βi and
ᾱij = (ζ + η)αij . Because Ri submits I and Pj submits C,
in Line 14, we have β̄i = (1 + ζ)βi − (1 + ζ)βi = 0 and
ᾱij = (ζ+η)αij− (ζ+η)αij = 0. Because Ti is incomplete, we
have yij = 0 and xi = 0. Based on equations (3.1) and (3.2),
Ri’s utility is −βi − ζβi and Pj’s utility is −ζαij − ηαij .

B. Analysis of DFF
In this subsection, we introduce the definition of semi-
truthfulness and prove several properties of DFF.

Definition 5.1: A mechanism is semi-truthful if each
individual has no positive increment in utility when it unilater-
ally behaves dishonestly while others are being honest. 2

Comparing the definitions of semi-truthfulness and truthful-
ness, semi-truthfulness requires a stronger requirement, assum-
ing that the other individuals are honest, while truthfulness has
no such assumption.

Theorem 2: DFF is semi-truthful, transaction-wise budget-
balanced, and computationally efficient. 2
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TABLE 3
UTILITIES OF Ri AND Pj IN DFF FOR EACH (Ri, Pj) ∈ W , THE ENTRY FOR EACH EQUILIBRIUM IS MARKED BY X.

Ri

Pj Ti completed Ti not completed
C I C I

C (vi − βi, αij − cij)X (vi − βi,−cij − ηαij) (−βi, αij) (−βi,−ηαij)
I (vi − βi − ζβi,−cij − ζαij − ηαij) (vi,−cij − ηαij) (−βi − ζβi,−ζαij − ηαij)X (0,−ηαij)

To prove Theorem 2, we need the following three lemmas.
Lemma 5.1: DFF is semi-truthful. 2

Proof: Suppose that (Ri, Pj) is in W when Ri bids vi
and Pj bids cj . If Pj completes Ti and no individual lies, Ri’s
utility is vi − βi ≥ 0 and Pj’s utility is αij − cij ≥ 0. Suppose
that Ri bids a value deviating from vi, it will not pay a lower
payment due to the truthfulness of M. If Ri lies by reporting
I instead of C, and Pj does not lie and reports C, Ri’s utility
would be vi−(1+ζ)β′i ≤ vi−(1+ζ)βi ≤ vi−βi, where β′i is
the corresponding payment after Ri changes its bid. Thus, Ri
has no incentive to lie when Ti is completed and Pj is honest.
For Pj , by deviating its ask from cj , it will not receive a higher
payment. If Pj lies by reporting I, and Ri does not lie and
reports C, Pj’s corresponding utility would be −ηα′ij − cij ≤
α′
i
j − cij ≤ αij − cij , where α′ij is the corresponding payment

of Pj after Pj changes its bid. Thus, Pj has no incentive to lie
when Ti is completed and Ri is honest. If Pj chooses not to
complete Ti and reports I honestly, its utility would be −ηα′ij <
0. If Pj reports C dishonestly, since Ri is honest and reports
I, Pj’s utility would be −(η + ζ)α′

i
j < 0. Thus, Pj would

complete Ti. Therefore, if Ri or Pj knows that the other one
is honest, it would be honest.

Suppose that Ri loses the auction by bidding bi = vi. Its
original utility is 0. Suppose that Ri changes its bid. If it still
loses the auction, its utility remains to be 0. If it wins the
auction and Pj is assigned to Ti, Ri’s payment in the auction
βi is no smaller than vi since M is truthful. If Ti is completed,
according to Table 2, Ri’s utility is no larger than vi − βi ≤
vi−bi = 0 since Pj is honest and reports C. If Ti is incomplete,
Ri could not have a positive utility. Thus, Ri could not benefit
from unilaterally being dishonest.

Suppose that Pj loses the auction by asking aj = cj . Its
original utility is 0. Suppose that Pj changes its ask. If it still
loses the auction, its utility remains to be 0. If it wins the
auction and is assigned to Ti, Pj’s payment in the auction αij
is no larger than cij since M is truthful. If Pj completes Ti,
according to Table 2, its utility is no larger than αij − cij ≤
aij − cij = 0. If Pj does not complete Ti, it utility is no more
than −θαij ≤ 0 since Ri is honest and reports I. Thus, Pj could
not benefit from unilaterally being dishonest.

To sum up all cases, DFF is semi-truthful
Remark 5.1: With semi-truthfulness, we know that there is

one equilibrium left in correspondence with each status of Ti.
If Pj completes Ti, both Ri and Pj would report C. If Pj does
not complete Ti, both Ri and Rj would report I. Comparing
these two equilibria, Pj has a utility of αij − cij > 0 in the first
equilibrium, and a utility of −ηαij < 0 in the second one. Thus,

Pj prefers to complete Ti, which makes the first equilibrium the
unique SPE and encourages all winning providers to complete
their assigned tasks, while discouraging free-riding and false-
reporting. Note that in [35], the simultaneous game computes
two equilibria with no preference of Pj to complete Ti or
not. However, by applying the extensive-form game instead
of the simultaneous game, we have one unique SPE which
incentivizes all winning providers to complete the tasks and
discourages dishonest behaviors. 2

Lemma 5.2: DFF is transaction-wise budget-balanced. 2

Proof: Since M is transaction-wise budget-balanced, we
have βi ≥ αij for each (Ri, Pj) ∈ W . If both Ri and Pj
submit C, the platform utility generated from this winning pair
is U(Ri, Pj) = βi − αij ≥ 0. If Ri submits I and Pj submits
C, U(Ri, Pj) = (1 + ζ)βi + (ζ + η)αij ≥ 0. If Ri submits C
and Pj submits I, U(Ri, Pj) = βi + ηαij ≥ 0. If both of them
submit I, U(Ri, Pj) = ηαij ≥ 0. Thus, DFF is transaction-wise
budget-balanced.

Lemma 5.3: DFF is computationally efficient. 2

The proof is the same as that of Lemma 4.3 since the two
mechanisms have the same time complexity.

Lemmas 5.1− 5.3 complete the proof for Theorem 2.
Remark 5.2: Truthfulness is not guaranteed by DFF. For

instance, when Ti is incomplete and Ri reports C, Pj may
benefit by reporting C dishonestly instead of reporting I.
Individual rationality is another economic property that DFF
does not guarantee. Because when Ti is incomplete and Pj
lies, Ri’s utility is negative even if Ri reports honestly. 2

6. PERFORMANCE EVALUATION

To evaluate the performance of EFF and DFF, we implemented
both mechanisms, and carried out extensive testing on various
cases. In both EFF and DFF, we used TASC [33] as the auction
mechanism M. We chose Maximum Matching Algorithm [30]
as the bipartite matching algorithm used in TASC. The tests
were run on a PC with a 3.5 GHz CPU, and 16 GB memory.

Remark 6.1: TASC [33] is a double auction based incentive
mechanism proposed for cooperative communication, where the
relay nodes offer relay services for rewards. TASC is truth-
ful, individually rational, transaction-wise budget-balanced, and
computationally efficient. TASC consists of two major steps.
First, it applies a bid-independent bipartite matching algorithm
to compute an assignment from the buyers to the sellers. Then
it applies the McAfee [21] double auction to determine final
payments for all buyers and sellers. 2

Performance Metrics: We first studied the impact of the
size of users on the running time as a demonstration of
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computational efficiency, and compare the running time of EFF
and DFF with that of TASC. We next studied the impact of the
size of users and user behavior on the platform utility. Finally,
we studied the utilities of providers and requesters.

A. Simulation Setup

For EFF, we set τi = 10 for all Ti and θ = 0.1. For DFF,
we set ζ = 0.6 and η = 0.1. Note that this setting is for
simplicity only. For properties of τi, θ, ζ, and η, see Section 4
and Section 5, respectively. Valuations, costs, bids, and asks
are uniformly distributed over [0, 20]. All results in Figs. 1-8
are averaged over 50, 000 runs for each configuration.

To study the behavior of the running time as a function of the
number of users, we first fixed m = 100 and let n increase from
10 to 1000; then we fixed n = 100 and let m increase from 10
to 1000. The corresponding results are reported in Fig. 1 and
Fig. 2, respectively.

To study the behavior of the platform utility as a function
of the number of users, we first fixed m = 100 and let n
increase from 10 to 1000; then we fixed n = 100 and let m
increase from 10 to 1000. We chose the scenario where all
providers complete their tasks and all individuals are honest
(we will present the impact of dishonest users with incomplete
tasks on the platform utilities later). In this case, according
to Algorithm 1, Algorithm 2, and equation (3.3), the platform
utilities in EFF and DFF are the same. Thus, we only show
the platform utilities in EFF, and the corresponding results are
reported in Fig. 3.

To study the platform utility as a function of the percentage
of completed tasks in DFF, we fixed m = 100 and n = 100,
and let the percentage of completed tasks vary from 0% to
100% with an increment of 5%. To study the impact of the
number of honest users (who submit honest reports) on platform
utility, we first set all requesters to be honest and monitor
different percentages of honest providers with different system
parameter values of η and ζ in Fig. 4 and Fig. 5, respectively.
Then we set all providers to be honest, and monitor different
percentages of honest requesters in Fig. 6.

To study the platform utility as a function of the percentage
of completed tasks in EFF, we fixed m = 100 and n = 100,
and let the percentage of completed tasks vary from 0% to
100% with an increment of 5%. The corresponding results are
presented in Fig. 7 and Fig. 8.

To study the utilities of requesters and providers, we set
m = n = 100, and ran both EFF and DFF. The corresponding
results are reported in Figs. 9-12, where R87 is a randomly
picked requester and P31 is the corresponding provider, with
v87 = 17, c8731 = 4. R87 is matched up with P31 by the
Maximum Matching Algorithm.

B. Simulation Results

Running Time
We study the impact of the size of users on the running time

as a demonstration of computational efficiency. Since EFF and

DFF have the same running time, we only show the running
time of EFF. From Fig. 1, we observe that with the increase
of m, the running time increases quadratically when m < n,
then grows linearly when m > n. This is because the first part
of TASC is a bipartite matching algorithm [30], which takes
O(min{m,n}×|E|) time, where |E| is the number of edges in
the graph and is bounded by O(mn). Let l = min{m,n}. The
total time complexity is O(l|E|+ l log l). Thus, in Fig. 1, when
m < n = 100, the running time is O(m2); when m > n = 100,
the running time is O(m). Fig. 2 can be interpreted by a similar
approach. Comparing Fig. 1 and Fig. 2, we observe that the
impact from m and n are almost the same. Another observation
is that the running time of EFF is almost the same as that
of TASC, which implies that applying EFF or DFF does not
introduce a high computation cost to M.
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Fig. 1. Running time of EFF and TASC with n = 100
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Fig. 2. Running time of EFF and TASC with m = 100

Platform Utility
We study the platform utility of EFF as a function of the

number of providers and requesters in Fig. 3. We observe
that the platform utility is non-negative, which is guaranteed
by the transaction-wise budget-balance of EFF. The platform
utility increases at first, then stays steady when m > 100.
This is because the platform utility depends on not only the
final payments, but also |W|, which is bounded by min{m,n}.
Therefore, when m < n, |W| increases and the platform utility
increases. When |W| reaches min{m,n}, the platform utility
stays at a steady level. Since in this scenario, the platform
utilities in EFF and DFF are the same. we only show the
platform utilities in EFF.
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Fig. 3. Platform utilities in EFF

We study the impact of user behavior on the platform utility
in DFF. The results are presented in Fig. 4, Fig. 5, and Fig. 6,
respectively. In Fig. 4 and Fig. 5, we observe that when all
requesters are honest in DFF, with the increasing percentage of
completed tasks, the platform utility decreases. This is because
with more tasks completed, the platform collects less penalties
from providers for incomplete tasks. However, in Fig. 5 where
we set η = 0.3 and ζ = 4, with the increasing percentage of
completed tasks, the platform utility increases. This is because
with more completed tasks, the platform collects more penalties
from the situation where providers are lying on their reports.
Comparing Fig. 4 and Fig. 5, the different trends are due to
different system parameter values. Since it is not the major
concern of this paper on how to set the values for τi, η, and
ζ, we do not provide theoretical analysis on the impact of
τi, η and ζ on the platform utility. In Fig. 4, Fig. 5, and
Fig. 5, we can observe that with more honest users, the platform
utility decreases. This is because when Ri and Pj both behaves
honestly for each (Ri, Pj) ∈ W , the platform would not collect
penalties from them for being dishonest.
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Fig. 4. Platform utilities in DFF with honest requesters, η = 0.1 and ζ = 0.6

Fig. 6 shows the platform utilities of EFF as a function of
the number of completed tasks, and it can be interpreted by a
similar approach as that of Fig. 5. However, it can be proved
theoretically that changing system constants η and ζ would not
change the increasing trend in Fig. 6. Since it is not the major
concern in this paper, we do not show the analysis here.

We study the impact of user behavior on the platform utility
in EFF, and the results are shown in Fig. 7 and Fig. 8. We
observe that when all requesters are honest in EFF, with the
increasing percentage of the completed tasks, the platform
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Fig. 5. Platform utilities in DFF with honest requesters, η = 0.3 and ζ = 4
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Fig. 6. Platform utilities in DFF when all providers are honest

utility decreases. This is because with more tasks completed,
the platform collects less penalties from the providers for
incomplete tasks. Another observation is that the number of
honest users does not have an impact on the platform utility.
This is because in EFF, if an individual submits a dishonest
report, it pays τi to the platform. However, the platform needs
to pay τi for arbitration. Thus, the number of honest users does
not influence the platform utility in EFF.
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Fig. 7. Platform utilities in EFF with honest providers

Individual Utility
We monitor the utilities of R87 and P31 in EFF. Fig. 9 shows

the utilities of R87 and P31, where P31 completed the assigned
task in EFF. From Fig. 9a and Fig. 9b, we observe that neither
R87 nor P31 can have a utility higher than that it has when
bidding b87 = v87 = 17 and asking a8731 = c8731 = 4. From
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Fig. 3. Platform Utility in EFF: (a) m = 100, (b) n = 100.

We study the impact of user behavior on the platform utility
in DFF. The results are presented in Fig. 4, Fig. 5, and Fig. 6,
respectively. In Fig. 4 and Fig. 5, we observe that when all
requesters are honest in DFF, with the increasing percentage of
completed tasks, the platform utility decreases. This is because
with more tasks completed, the platform collects less penalties
from providers for incomplete tasks. However, in Fig. 5 where
we set η = 0.3 and ζ = 4, with the increasing percentage of
completed tasks, the platform utility increases. This is because
with more completed tasks, the platform collects more penalties
from the situation where providers are lying on their reports.
Comparing Fig. 4 and Fig. 5, the different trends are due to
different system parameter values. Since it is not the major
concern of this paper on how to set the values for τi, η, and
ζ, we do not provide theoretical analysis on the impact of
τi, η and ζ on the platform utility. In Fig. 4, Fig. 5, and
Fig. 5, we can observe that with more honest users, the platform
utility decreases. This is because when Ri and Pj both behaves
honestly for each (Ri, Pj) ∈ W , the platform would not collect
penalties from them for being dishonest.
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Fig. 6 shows the platform utilities of EFF as a function of
the number of completed tasks, and it can be interpreted by a
similar approach as that of Fig. 5. However, it can be proved
theoretically that changing system constants η and ζ would not
change the increasing trend in Fig. 6. Since it is not the major
concern in this paper, we do not show the analysis here.

We study the impact of user behavior on the platform utility
in EFF, and the results are shown in Fig. 7 and Fig. 8,
respectively. We observe that when all requesters are honest
in EFF, with the increasing percentage of the completed
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tasks, the platform utility decreases. This is because with more
tasks completed, the platform collects less penalties from the
providers for incomplete tasks. Another observation is that
the number of honest users does not have an impact on the
platform utility. This is because in EFF, if an individual submits
a dishonest report, it pays τi to the platform. However, the
platform needs to pay τi for arbitration. Thus, the number of
honest users does not influence the platform utility in EFF.
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Individual Utility
We monitor the utilities of R87 and P31 in EFF. Fig. 9 shows

the utilities of R87 and P31, where P31 completed the assigned
task in EFF. From Fig. 9, we observe that neither R87 nor
P31 can have a utility higher than that it has when bidding
b87 = v87 = 17 and asking a8731 = c8731 = 4. From Fig. 9b,
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we observe that reporting C is the dominant strategy for P31.
According to Fig. 9a, R87 would report C when P31 reports
C. Thus, both R87 and P31 would report C.
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Fig. 9b, we observe that reporting C is the dominant strategy
for P31. According to Fig. 9a, R87 would report C when P31

reports C. Thus, both R87 and P31 would report C. Utility of
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Fig. 10 shows the utilities when P31 does not complete the
task in EFF. Again, we observe that no individual can get a
positive utility increment by being dishonest using a similar
analysis approach. Hence, both R87 and P31 would report I.
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Comparing the utilities of P31 in EFF when it completes the
task and when it does not complete the task (represented by the
blue line in Fig. 9b and the red line in Fig. 10b), P31 would
choose to complete the task for a higher utility.

Next we monitor the utilities of R87 and P31 in DFF. From
Fig. 11, we observe that when P31 completes the task, there is
no incentive for an individual to be dishonest when the other
is honest. Thus, both R87 and P31 would report C.

Fig. 12 shows the semi-truthfulness when P31 fails to com-
plete the task in DFF. Again, we observe that there is no
incentive for an individual to be dishonest when the other is
honest. Hence, both R87 and P31 would report I.
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Comparing the utilities of P31 in DFF when it completes the
task and when it does not complete the task (represented by the
blue line in Fig. 11b and the red line in Fig. 12b, respectively),
P31 would choose to complete the task for a higher utility.

7. CONCLUSIONS

In this paper, we proposed two novel mechanisms to tackle
free-riding and false-reporting in crowdsourcing. We first pre-
sented EFF and proved that with arbitration, EFF eliminates
free-riding and false-reporting, while guaranteeing truthfulness,
transaction-wise budget-balance, and computational efficiency.
We then presented DFF and proved that without arbitra-
tion, DFF is semi-truthful, while guaranteeing transaction-
wise budget-balance, and computational efficiency. Another
feature of our mechanisms is that providers are incentivized
to complete their assigned tasks. We implemented both EFF
and DFF. Extensive numerical results are presented to study
the performance of our proposed mechanisms.

REFERENCES

[1] [Online]. Available: http://www.yelp.com/
[2] [Online]. Available: http://answers.yahoo.com/
[3] [Online]. Available: https://www.mturk.com/mturk/welcome
[4] [Online]. Available: https://www.uber.com/
[5] P. Azar, J. Chen, and S. Micali, “Crowdsourced Bayesian auctions,” in

Proc. ACM ITCS ’12, pp. 236–248.
[6] S. Chawla, J. D. Hartline, and B. Sivan, “Optimal crowdsourcing con-

tests,” in Proc. ACM-SIAM SODA ’12, pp. 856–868.
[7] E. H. Clarke, “Multipart pricing of public goods,” Public Choice, vol. 11,

pp. 17–33, 1971.
[8] K. Deshmukh, A. V. Goldberg, J. D. Hartline, and A. R. Karlin, “Truthful

and competitive double auctions,” in ESA’02, pp. 361–373.
[9] D. DiPalantino and M. Vojnovic, “Crowdsourcing and all-pay auctions,”

in Proc. ACM EC’09, pp. 119–128.
[10] M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica, “Free-riding and

whitewashing in peer-to-peer systems,” IEEE JSAC, vol. 24, 2006.

10

Fig. 9. Completed tasks in EFF: (a) Utility of R87, (b) Utility of P31.

Fig. 10 shows the utilities when P31 does not complete the
task in EFF. Again, we observe that no individual can get a
positive utility increment by being dishonest using a similar
analysis approach. Hence, both R87 and P31 would report I.
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Fig. 9b, we observe that reporting C is the dominant strategy
for P31. According to Fig. 9a, R87 would report C when P31

reports C. Thus, both R87 and P31 would report C.
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task in EFF. Again, we observe that no individual can get a
positive utility increment by being dishonest using a similar
analysis approach. Hence, both R87 and P31 would report I.
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Comparing the utilities of P31 in EFF when it completes the
task and when it does not complete the task (represented by the
blue line in Fig. 9b and the red line in Fig. 10b), P31 would
choose to complete the task for a higher utility.

Next we monitor the utilities of R87 and P31 in DFF. From
Fig. 11, we observe that when P31 completes the task, there is
no incentive for an individual to be dishonest when the other
is honest. Thus, both R87 and P31 would report C.

Fig. 12 shows the semi-truthfulness when P31 fails to com-
plete the task in DFF. Again, we observe that there is no
incentive for an individual to be dishonest when the other is
honest. Hence, both R87 and P31 would report I.
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Comparing the utilities of P31 in DFF when it completes the
task and when it does not complete the task (represented by the
blue line in Fig. 11b and the red line in Fig. 12b, respectively),
P31 would choose to complete the task for a higher utility.

7. CONCLUSIONS

In this paper, we proposed two novel mechanisms to tackle
free-riding and false-reporting in crowdsourcing. We first pre-
sented EFF and proved that with arbitration, EFF eliminates
free-riding and false-reporting, while guaranteeing truthfulness,
transaction-wise budget-balance, and computational efficiency.
We then presented DFF and proved that without arbitra-
tion, DFF is semi-truthful, while guaranteeing transaction-
wise budget-balance, and computational efficiency. Another
feature of our mechanisms is that providers are incentivized
to complete their assigned tasks. We implemented both EFF
and DFF. Extensive numerical results are presented to study
the performance of our proposed mechanisms.
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Fig. 10. Incomplete tasks in EFF: (a) Utility of R87, (b) Utility of P31.

Comparing the utilities of P31 in EFF when it completes the
task and when it does not complete the task (represented by the
blue line in Fig. 9b and the red line in Fig. 10b), P31 would
choose to complete the task for a higher utility.

Next we monitor the utilities of R87 and P31 in DFF. From
Fig. 11, we observe that when P31 completes the task, there is
no incentive for an individual to be dishonest when the other
is honest. Thus, both R87 and P31 would report C.

Fig. 12 shows the semi-truthfulness when P31 fails to com-
plete the task in DFF. Again, we observe that there is no
incentive for an individual to be dishonest when the other is
honest. Hence, both R87 and P31 would report I.
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Fig. 9b, we observe that reporting C is the dominant strategy
for P31. According to Fig. 9a, R87 would report C when P31

reports C. Thus, both R87 and P31 would report C.
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Fig. 10 shows the utilities when P31 does not complete the
task in EFF. Again, we observe that no individual can get a
positive utility increment by being dishonest using a similar
analysis approach. Hence, both R87 and P31 would report I.
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Comparing the utilities of P31 in EFF when it completes the
task and when it does not complete the task (represented by the
blue line in Fig. 9b and the red line in Fig. 10b), P31 would
choose to complete the task for a higher utility.

Next we monitor the utilities of R87 and P31 in DFF. From
Fig. 11, we observe that when P31 completes the task, there is
no incentive for an individual to be dishonest when the other
is honest. Thus, both R87 and P31 would report C. Utility of
R87 Utility of P31

Fig. 12 shows the semi-truthfulness when P31 fails to com-
plete the task in DFF. Again, we observe that there is no
incentive for an individual to be dishonest when the other is
honest. Hence, both R87 and P31 would report I.
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P31 would choose to complete the task for a higher utility.

7. CONCLUSIONS

In this paper, we proposed two novel mechanisms to tackle
free-riding and false-reporting in crowdsourcing. We first pre-
sented EFF and proved that with arbitration, EFF eliminates
free-riding and false-reporting, while guaranteeing truthfulness,
transaction-wise budget-balance, and computational efficiency.
We then presented DFF and proved that without arbitra-
tion, DFF is semi-truthful, while guaranteeing transaction-
wise budget-balance, and computational efficiency. Another
feature of our mechanisms is that providers are incentivized
to complete their assigned tasks. We implemented both EFF
and DFF. Extensive numerical results are presented to study
the performance of our proposed mechanisms.
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Fig. 11. Completed tasks in DFF: (a) Utility of R87, (b) Utility of P31.
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Fig. 9b, we observe that reporting C is the dominant strategy
for P31. According to Fig. 9a, R87 would report C when P31

reports C. Thus, both R87 and P31 would report C.
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Fig. 10 shows the utilities when P31 does not complete the
task in EFF. Again, we observe that no individual can get a
positive utility increment by being dishonest using a similar
analysis approach. Hence, both R87 and P31 would report I.
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Comparing the utilities of P31 in EFF when it completes the
task and when it does not complete the task (represented by the
blue line in Fig. 9b and the red line in Fig. 10b), P31 would
choose to complete the task for a higher utility.

Next we monitor the utilities of R87 and P31 in DFF. From
Fig. 11, we observe that when P31 completes the task, there is
no incentive for an individual to be dishonest when the other
is honest. Thus, both R87 and P31 would report C.

Fig. 12 shows the semi-truthfulness when P31 fails to com-
plete the task in DFF. Again, we observe that there is no
incentive for an individual to be dishonest when the other is
honest. Hence, both R87 and P31 would report I. Utility of R87
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Comparing the utilities of P31 in DFF when it completes the
task and when it does not complete the task (represented by the
blue line in Fig. 11b and the red line in Fig. 12b, respectively),
P31 would choose to complete the task for a higher utility.

7. CONCLUSIONS

In this paper, we proposed two novel mechanisms to tackle
free-riding and false-reporting in crowdsourcing. We first pre-
sented EFF and proved that with arbitration, EFF eliminates
free-riding and false-reporting, while guaranteeing truthfulness,
transaction-wise budget-balance, and computational efficiency.
We then presented DFF and proved that without arbitra-
tion, DFF is semi-truthful, while guaranteeing transaction-
wise budget-balance, and computational efficiency. Another
feature of our mechanisms is that providers are incentivized
to complete their assigned tasks. We implemented both EFF
and DFF. Extensive numerical results are presented to study
the performance of our proposed mechanisms.
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and DFF. Extensive numerical results are presented to study
the performance of our proposed mechanisms.
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