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Abstract—Mobile phones with a rich set of embedded sensors
enable sensing applications in various domains. In this paper,
we propose to leverage cloud-assisted collaborative sensing to
reduce sensing energy consumption for mobile phone sensing
applications. We formally define a minimum energy sensing
scheduling problem and present a polynomial-time algorithm
to obtain optimal solutions, which can be used to show energy
savings that can potentially be achieved by using collaborative
sensing in mobile phone sensing applications, and can also serve
as a benchmark for performance evaluation. We also address
individual energy consumption and fairness by presenting an
algorithm to find fair energy-efficient sensing schedules. Under
realistic assumptions, we present two practical and effective
heuristic algorithms to find energy-efficient sensing schedules.
It has been shown by simulation results based on real energy
consumption (measured by the Monsoon power monitor) and
location (collected from the Google Map) data that collaborative
sensing significantly reduces energy consumption compared to a
traditional approach without collaborations, and the proposed
heuristic algorithm performs well in terms of both total energy
consumption and fairness.

Index Terms—Mobile phone sensing, energy-efficiency, oppor-
tunistic sensing, collaborative sensing, scheduling.

I. INTRODUCTION

Mobile phones have evolved as key electronic devices for

communications, computing and entertainments, and have be-

come an important part of people’s daily life. Most of current

smart phone models (such as iPhone 4S, HTC’s Android

phones, etc) are also equipped with a rich set of embed-

ded sensors such as camera, GPS, WiFi/3G/4G interfaces,

accelerometer, digital compass, gyroscope, microphone and

so on [6]. Moreover, external sensors can also be connected

to a mobile phone via its Bluetooth interface. These sen-

sors can enable sensing applications in various domains [6]

such as environmental monitoring, social network, health-

care, transportation, safety, etc. For example, researchers from

University of California at Los Angeles (UCLA), developed

a mobile phone sensing application, called PEIR (Personal

Environmental Impact Report) [13], which uses location data

sampled from mobile phones everyday to calculate personal-

ized estimates of environmental impact and exposure. A noise

map facilitates monitoring of environmental noise pollution in

urban areas. Researchers from University of New South Wales

and Portland State University developed a participatory urban

noise mapping system called Ear-Phone [16], to create noise

maps for different areas. In addition, www.sensorly.com is a

website which offers free access to 100% community powered

coverage maps for various wireless networks (3G/4G/WiFi).

Their mapping crowd collects data everyday using a free

application on mobile phones, which produces a true picture

of carriers’ coverage. More mobile phone sensing applications

have been introduced in [6].

Even though these applications are very attractive, per-

forming sensing tasks using a mobile phone may consume

significant amount of energy. Therefore, without carefully

managing very limited energy resources on mobile phones,

mobile users may end up with an awkward situation after

performing a few sensing tasks, in which phones are out of

battery when they are needed to make phone calls. There is

a large space for energy savings on a mobile phone. In this

work, we study how to minimize sensing energy consumption

such that mobile phones can undertake sensing tasks, and in

the meanwhile, they can still fulfill their regular duties, such

as phone calls, emails, etc.

There are two mobile phone sensing paradigms [6]: 1)

Participatory Sensing: users actively engage in sensing ac-

tivities by manually determining how, when, what, and where

to sense. 2) Opportunistic Sensing: Sensing activities are fully

automated without user involvement. In this work, we focus on

opportunistic sensing applications (e.g., environmental noise

sensing [16], wireless signal sensing [20], etc). We aim to

develop general (application-independent) methods to control

the sensing procedure with the objective of minimizing sensing

energy consumption. A commonly used method is to make

every mobile phone sense periodically (every x seconds). This

method is obviously not efficient because if this method is

used, many redundant data reports may be produced for a

target region by a large number of users which happen to show

up in that area. Redundancy (i.e., the number of times a user

senses) can be reduced and energy-efficiency can be improved

by using a coordinator to control sensing activities of users

such that those mobile phones sense collaboratively to produce

just enough data reports for the application. To this end, we

propose to use a cloud-assisted collaborative sensing approach.

Cloud computing has evolved as an important computing

model, which can be leveraged to assist mobile phone sensing

by using servers in a cloud to not only handle data reports

from mobile phones but also collect mobility and location

information from mobile phones, calculate the best sensing

schedule and tell them when/where to sense. Those sensors

that are not needed for sensing can be turned off or work in

a low power mode.

Participatory sensing and opportunistic sensing have been

studied by a few recent works [6], most of which were focused
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on the design and implementation of a particular mobile phone

sensing application. However, we address fundamental and

general sensing scheduling and coverage issues for oppor-

tunistic sensing without targeting a particular application. In

addition, algorithms proposed for mobile sensor networks [18],

[25], [26] cannot be applied here since they usually assume

that mobility of sensors can be controlled to provide certain

sensing coverage. However, in mobile phone sensing scenar-

ios, sensors’ mobility is usually uncontrollable. In this paper,

we study optimization problems related to energy-efficient

collaborative sensing with mobile phones. Our contributions

are summarized in the following:

1) Assuming knowing each user’s moving trajectory in ad-

vance, we present a polynomial-time algorithm to ob-

tain minimum energy sensing schedules. Even though

this assumption may not be realistic, the obtained

solutions can be used to show potential energy savings

that can be brought by using collaborative sensing in

mobile phone sensing applications, and can also serve

as a benchmark for performance evaluation. We also

address individual energy consumption and fairness by

presenting an algorithm to find fair energy-efficient

sensing schedules.

2) We present practical and effective heuristic algorithms

to find energy-efficient sensing schedules under realis-

tic assumptions.

3) We present simulation results based on real location

(collected from the Google Map) and energy consump-

tion (measured by the Monsosn power monitor [12])

data to show that collaborative sensing significantly

reduces energy consumption compared to a traditional

approach without collaborations, and the proposed

heuristic algorithm perform well in terms of both total

energy consumption and fairness.

To the best of our knowledge, we are the first to present

theoretically well-founded and practically useful algorithms

to show the benefits of using collaborative sensing in mobile

phone sensing applications. The rest of this paper is organized

as follows. We discuss related works in Section II. We describe

the system model and formally define the problems in Sec-

tion III. The proposed algorithms are presented in Section IV.

We present the simulation results in Section V and conclude

the paper in Section VI.

II. RELATED WORK

Mobile phone sensing has recently attracted extensive re-

search attention from both academia and industry due to its

attractive applications. Besides applications mentioned above,

there are also mobile phone sensing projects on social net-

working [11], health and well being [3] and many other

areas [6]. For example, the CenceMe [11] system represents

the first system that combines the inference of the presence of

individuals using mobile phones with sharing of this informa-

tion through social networking applications such as Facebook

and MySpace. The UbiFit Garden [3], a joint project between

Intel and the University of Washington, captures levels of

physical activity and relates this information to personal health

goals by presenting feedbacks to the user. A comprehensive

review of these applications can be found in a recent survey

paper [6].

Sensing and coverage related issues have been studied

in the context of mobile phone sensing recently. In [17],

Reddy et al. proposed a network service architecture for

participatory sensing and described challenges in network co-

ordination services, attestation mechanisms and participatory

privacy regulation mechanisms. In [9], the authors presented

the design, implementation and evaluation of the Jigsaw con-

tinuous sensing engine for mobile phones, which balances the

performance needs of an application and resource demands.

Jigsaw comprises a set of sensing pipelines for accelerometer,

microphone and GPS sensors, which are built in a plug and

play manner to support resilient accelerometer data processing,

smart admission control and adaptive pipeline processing. The

authors of [14] presented the design, implementation and

evaluation of several techniques to optimize the information

uploading process for continuous sensing on mobile phones.

The paper [7] studies economic models of user participation

incentive in participatory sensing applications. In [5], the

authors presented Zoom, a multi-resolution tasking framework

for crowd-sourced geo-spatial sensor networks. Zoom allows

users to define arbitrary sensor groupings over heterogeneous,

unstructured and mobile networks and assign different sensing

tasks to each group.

Only few recent works addressed collaborative sensing

with mobile phones. In [10], the authors presented analytical

results on the rate of information reporting by uncontrolled

mobile sensors needed to cover a given geographical area,

and demonstrate the feasibility of using existing software and

standard protocols for information reporting and retrieval to

support a large system of uncontrolled mobile sensors using

a testbed. In [23], the authors introduced mechanisms for

automated mapping of urban areas that provide a virtual sensor

abstraction to applications. They also proposed spatial and

temporal coverage metrics for measuring the quality of ac-

quired data. In [22], the authors proposed a protocol, Aquiba,

that exploits opportunistic collaboration of pedestrians. Its

performance was studied via simulations.

Collaborative sensing has been well studied for mobile

sensor networks. In [26], Zhou et al. considered how to deploy

mobile sensors into an existing sensor network to enhance its

connectivity and coverage, and presented a dynamic program-

ming based algorithm under the assumption that each sensor

is equipped with GPS. Several distributed algorithms were

presented for a sensing coverage problem in [25], which do not

need any location and distance information. In [18], Saipulla et

al. explored the fundamental limits of sensor mobility on

barrier coverage and presented a sensor mobility scheme that

constructs the maximum number of barriers with minimum

sensor moving distance.

The differences between our work and these related works

are summarized as follows: 1) Unlike papers that were focused

on particular mobile phone sensing applications [3], [11], [13],

[16], [20], we aim at designing general (instead of application-

specific) approaches to enable energy-efficient sensing with

mobile phones. 2) The optimization problems considered
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in related works [5], [7], [9], [10], [14], [17], [22], [23]

are mathematically different from the problems considered

here. 3) Closely related works [22], [23] presented heuristic

algorithms that cannot provide performance guarantees. We,

however, present algorithms to produce optimal solutions,

which can be used to justify the use of collaborative sensing

in opportunistic sensing applications and show the potential

energy savings quantitatively. This is the major contribution

of this paper. 4) The algorithms presented in [18], [25], [26]

for mobile sensor networks (in which sensor mobility can

be controlled to achieve certain sensing coverage) cannot be

applied here because the mobility of mobile phones is usually

uncontrollable.

III. PROBLEM DEFINITION

First, we summarize the major notations in Table I.

TABLE I
MAJOR NOTATIONS

G(V,E) The VSG and its vertex and edge sets.

M The number of roads in the target region.

N The number of mobile users/phones

Si The sensing schedule of user i

T The deadline of the given sensing task.

wi The energy needed to sense once using user i’s phone.

Γi The moving trajectory of user i

We consider a mobile phone sensing system with multiple

mobile users, each of which carries a mobile phone equipped

with sensors. The mobility of each mobile user cannot be

controlled. However, mobile users’ movements are highly

restricted by roads, i.e., a vehicle or a person can only move

along roads and turn at intersections. The movements of a

mobile user i can be characterized using a trajectory Γi which

is a set of 3-tuples (i, ti, loci) and each of them gives the

location of user i at time ti. The more 3-tuples there are

in the trajectory, the more accurately it can characterize the

movements of mobile user i.
Again, we focus on the opportunistic sensing scenario in

which sensors on each mobile phone automatically perform

sensing tasks without user involvement. Each sensor is as-

sumed to have a sensing range of r, which basically means if

a user sense at a location locx and obtain a reading, then there

is no need to sense again in any location within the disk with

the origin at locx and a radius of r since the readings will

be similar. Sensing target areas are roads in a given region,

which are assumed to be narrow chains. The width of a road

is assumed to negligible because r is usually larger or much

larger. We consider regular roads which are roughly straight

roads. Those irregular roads can be treated as a sequence of

regular roads. If a user is on a road, it is assumed to cover a

segment (b, c) with a length of 2r. We can be more or less

conservative on coverage by setting the value of r to a smaller

or larger value. In the following, we will use user, phone and

sensor interchangeably.

Given a sensing application, multiple servers are set up in a

cloud to coordinate sensing activities. Servers are assumed to

periodically exchange information to have a consistent view

of mobile phones in the system. Each mobile phone can

exchange information with one of the servers using its wireless

interface. Our approach is to use servers to gather information

from mobile phones, determine when/where to sense for each

phone, send the sensing schedule to mobile phones and then

collect sensed data reports from them.

Every 3-tuple in a trajectory can be imagined as a virtual

sensor. If trajectories of all users are given, then we will have

a large network of virtual sensors by combining all 3-tuples

in trajectories. A sensing schedule S is a collection of virtual

sensor sets, i.e., S =
⋃N

i=1
Si, where Si ⊆ Γi. |Si| gives

the number of times user i (mobile phone of user i) senses.

Note that performing a common sensing task may consume

different amount of energy on different phones. For example,

energy consumption of a WiFi scan on three popular Andorid-

based smart phones can be found in Table II.

Since energy efficiency is the primary design goal of this

work, we want to minimize total energy consumed in the

whole sensing procedure. So we define the following opti-

mization problem.

Definition 1 (MECSS): Given a region, M roads in the

region, N mobile users, a deadline T and the moving trajectory

Γi of each user i ∈ {1, · · · , N} before the deadline, the Min-

imum Energy Collaborative Sensing Scheduling (MECSS)

problem seeks a sensing schedule Si ⊆ Γi for each user i,
such that its total energy consumption

∑N

i=1
wi|Si| (where wi

is the energy needed to sense once with the mobile phone of

user i) is minimized subject to the constraint that the roads in

the given region are fully covered before the deadline T .

However simply minimizing the total energy consumption

may lead to unfair utilizations of mobile phones, some users’

phones are heavily used for sensing and other users’ phones

are lightly utilized or not utilized at all. A similar issue has

been shown by previous works [21] for wireless mesh and

sensor networks: simply maximizing network throughput leads

to severe unfairness on users’ individual throughput. There-

fore, we try to improve fairness by only considering those

sensing schedules with the min-max number of user sensing

times. We call such schedules min-max fair sensing schedules.

We also study the Fair Energy-efficient Collaborative Sensing

Scheduling (FECSS) problem which seeks a min-max fair

sensing schedule Si ⊆ Γi for each user i, such that its total

energy consumption is minimized.

Assuming knowing the trajectory of each mobile user in ad-

vance, we present algorithms to solve these sensing scheduling

problems optimally, which are presented in Section IV-A. It

may be argued that these assumptions are not realistic since

it is hard to precisely predict how users move in the future

and mobile users need to turn on the GPS devices on their

mobile phones to obtain precise locations, which, however, are

energy-hungry [8] (a GPS device usually consumes much more

energy than other sensors). However, the optimal solutions

can be used to show energy savings that can potentially be

achieved by collaborative sensing and they can serve as a

benchmark for performance evaluation, i.e., can be used to

find out how far a sensing schedule produced by a practical

heuristic algorithm is away from the optimal. Therefore, it

makes sense to present the optimal algorithms. We also present
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two practical and simple heuristic algorithms in Section IV-B

to find energy-efficient sensing schedules for mobile users,

which do not need moving trajectories beforehand or precise

locations.

IV. COLLABORATIVE SENSING ALGORITHMS

A. Optimal Algorithms

In order to solve the MECSS problem defined above, we

first introduce a graph model, Virtual Sensor Graph (VSG)

G(V,E), to assist computation. As mentioned above, the

moving trajectory of each mobile user is assumed to be known

and each 3-tuple (i, ti, loci) in a trajectory can be viewed as

a virtual sensor. The sensing scheduling problem is actually

to find a subset of virtual sensors to cover the roads in the

target region. This graph is a multi-layer directed graph and

each layer corresponds to a road L in the target region. Every

vertex corresponds to a virtual sensor vj (associated with user

i). Let (bj , cj) and (bj′ , cj′) be segments of L covered by

virtual sensors vj and vj′ (that are on L), respectively. There

is a directed edge from vj to vj′ if bj < bj′ ≤ cj < cj′
(i.e., their coverage areas overlap). Its capacity and cost are

set to 1 and wi′ (virtual sensor vj′ is associated with user i′),
respectively. For a virtual sensor (vertex) on multiple roads

(e.g., virtual sensors at inter-sections are on two or more

roads.), we arbitrarily pick a corresponding layer (road) to

place it in G. Moreover, for each virtual sensor v (associated

with user i) covering segments on multiple roads, we have

to create a pair of vertices (vin, vout) to represent it in G,

and there is a directed edge from vin to vout whose capacity

and cost are set to ∞ and wi respectively. We call such virtual

sensors cross-road virtual sensors and those edges intra-vertex

edges. There is a directed edge from vout to another vertex u or

from another vertex u to vin if the aforementioned condition is

met. The capacities and costs of all incoming edges associated

with a cross-road virtual sensor are set to 1 and 0 respectively.

However, the capacity and cost of an outgoing edge (to vertex

u associated with user h) associated with a cross-road virtual

sensor are set to 1 and wh respectively. Note that another

vertex u here may be in the same layer or in a different layer.

Therefore, edges associated with cross-road virtual sensors

may cross layers.

In addition, we also add a virtual source sm for each

layer m ∈ {1, · · · ,M} and edges from sm to all the

vertices whose corresponding virtual sensors cover the west-

ern/southern boundary of the corresponding road with their

capacities and costs set to 1 and the energy cost of the user

associated with its destination vertex, as well as a virtual

sink zm and edges from all the vertices whose corresponding

virtual sensors cover the eastern/northern boundary of the

corresponding road to zm with their capacities and costs set to

1 and 0 respectively. In addition, there are an ultimate virtual

source s and sink z. There are also edges from s to virtual

sources in all layers with their capacities and costs set to 1 and

0, and edges from virtual sinks in all layers to z with their

capacities and costs set to 1 and 0 too. A simple example

in Fig. 1 is used to illustrate the graph construction. In this

example, we have 6 virtual sensors and two roads. Virtual

sensors 1, 2, 3 are on road 1 and are assumed to be associated

with user 1; and virtual sensors 4, 5, 6 are on road 2 and they

are assumed to be associated with user 2, as illustrated by

the first sub-figure. The corresponding 2-layer VSG is given

in the second sub-figure, in which the first number associated

with each edge is its capacity and the second number is its

cost. In this example, vertex v5 corresponds to a cross-road

virtual sensor which can be used to cover both roads 1 and 2.

Intuitively, such virtual sensors should be fully leveraged to

reduce sensing energy consumption. We present our optimal

algorithm for the MECSS problem as follows.
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Fig. 1. Roads, virtual sensors and the corresponding VSG

Algorithm 1 The optimal MECSS algorithm

Step 1 Construct the VSG G(V,E);
Step 2 Solve the LP relaxation of the ILP-MinE;

Step 3 if (No feasible solution)

output ”There is no feasible solution!”;

else

output the corresponding sensing schedule;

endif

Unknown decision variables:

1) fe (e ∈ E): the amount of flow on link e.

2) xe = {0, 1} (e ∈ E): If xe = 1, link e in G is selected;

xe = 0, otherwise.

ILP-MinE:

min
∑

e∈E

wexe (1)

Subject to:
∑

e∈Eout
s

fe = M, (2)

∑

e∈Eout
v

fe =
∑

e∈Ein
v

fe, ∀v ∈ V \ {s, z}; (3)

fe ≤ Ce, ∀e ∈ E; (4)

xe

{

≥ fe′ , ∀e ∈ Eintra, ∀e′ ∈ Ein
e ;

= fe, ∀e ∈ E − Eintra.
(5)
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In this algorithm, the LP relaxation of an Integer Linear

Programming (ILP), ILP-MinE, needs to be solved to obtain

optimal solutions. In the ILP, fe and xe (e ∈ E) are both in-

teger variables and Ein
v /Eout

v is the set of incoming/outgoing

edges of vertex v on G. Eintra is the set of intra-vertex edges

and Ein
e is the set of incoming edges associated with the

source vertex of edge e on G. Once we obtain values for xe by

solving the corresponding LP relaxation (which are guaranteed

to be 0 or 1), then we can figure out which virtual sensors

should be selected for sensing (i.e., which user should sense

at when and where). Specifically, if e = (u, v) is a regular

edge in G and xe = 1, then the virtual sensor corresponding

to its destination vertex v will be selected for sensing. If e is

an intra-vertex edge and xe = 1, then obviously the virtual

sensor corresponding to e will be selected for sensing. We

have the following proposition.

Proposition 1: Algorithm 1 optimally solve the MECSS

problem in polynomial time.

Proof: The importance of the SVG lies in the fact that

any feasible integer s − z flow with a total flow amount of

M (the number of roads in the target region) gives a feasible

(in terms of coverage) sensing schedule. This is because our

graph construction guarantees that every integer s − z flow

in a layer (which may include edges from different layers)

corresponds to a sensing schedule that can fully cover the

road corresponding to that layer. For example, in Fig. 1, an

integer flow (s, s1, v1, v2, v
in
5
, vout

5
, v3, z1, z) corresponds to

a sensing schedule with virtual sensors 1, 2, 5 and 3. Note

that we introduce two virtual vertices in each layer that are

used to deal with the case where multiple virtual sensors may

be able to cover the head of a road. Setting corresponding

edges’ capacities to 1 ensures that fully covering each road

once instead of covering a road more than once but leaving

some other roads not fully covered.

In addition, the costs of most regular edges (except those

associated with virtual vertices) are set to the energy cost

of users (associated with their destination vertices). Then the

selection of an edge e = (u, v) basically means the corre-

sponding virtual sensor (i.e., the virtual sensor corresponding

to vertex v) is added to the sensing schedule. For those vertices

corresponding to cross-road virtual sensors which may make

contributions for covering of multiple roads, the costs of all

the corresponding incoming cross-layer edges are set to 0 and

the cost of the corresponding intra-vertex edge is set to the

energy cost of the corresponding user. This way of assigning

link costs along with Constraints (5) ensure that no matter how

many roads can benefit from the coverage contributions made

by using this vertex (virtual sensor), it is only counted once.

The costs of those edges associated with virtual vertices are

also assigned properly (e.g., cost(e) := 1, where e = (si, v);
while cost(e′) := 0, where e′ = (v′, zi)) such that by counting

the total costs of selected edges, we can find out the total

energy consumption. Hence, due to the way how the costs of

edges in a VSG is assigned, we can claim that a minimum cost

s−z flow with a flow amount of M actually corresponds to a

feasible (coverage-wise) sensing schedule with the minimum

energy consumption.

By replacing variables xe in the objective function

with Constraints (5), we can see that solving the ILP-

MinE is equivalent to solving a series of ILP, each of

which has Constraints (2)–(4) and an objective function of

min
∑

e∈E−Eintra wefe +
∑

e∈Eintra wefe′ (where e′ is one

of incoming edge of the intra-vertex edge e); and then take

the maximum of all objective values. Each such an ILP is

a minimum-cost-flow-like problem, whose coefficient matrix

is totally unimodular [24]. It is known that solving the LP

relaxation of such an ILP problem automatically yields integral

optimal solutions [24]. Furthermore, the ILP-MinE obviously

includes polynomial numbers of variables and constraints.

Therefore, the LP relaxation of the ILP-MinE can be solved

by existing algorithms [1] in polynomial time, which can yield

integral optimal solutions. This completes the proof.

The FECSS problem can be solved by an algorithm similar

to Algorithm 1. Instead of solving the ILP-MinE, if we solve

two following ILPs sequentially, then we can obtain a fair

energy-efficient sensing schedule. Specifically, we first solve

the ILP-Maxmin and obtain the min-max number of sensing

times β. Because of Constraints (7) and the objective function,

we can guarantee that for any feasible solution given by

solving the ILP-Maxmin is min-max fair (according to our

definition above). Next, we feed β to the ILP-FECSS as a

parameter, which has the objective function of minimizing the

total energy consumption and Constraints (7). Here, Ei is the

set of edges associated with user i. Note that for a user with

cross-road virtual sensors, only the corresponding intra-vertex

edges are counted. Therefore, solving the ILP-Maxmin and

ILP-FECSS in sequence can provide an optimal solution for

the FECSS problem. We also used solutions generated by this

algorithm as a benchmark for comparison in our simulation.

ILP-Maxmin:

minβ (6)

Subject to: Constraints (2)–(5)

∑

e∈Ei

xe ≤ β, ∀i ∈ {1, · · · , N}; (7)

ILP-FECSS(β):

min
∑

e∈E

wexe

Subject to: Constraints (2)–(5) and (7)

B. Practical Heuristic Algorithms

In this section, we present two practical heuristic algorithms.

First, we do not assume the moving trajectory of each user is

known; second, we do not assume that users use their energy-

hungry GPS devices all the time. However, without knowing

anything about mobile users, the only thing we can do is

probably to let them sense periodically. Therefore, we do as-

sume that users’ moving directions and speeds can be detected

and measured using some sensors (such as accelerometer and

digital compass) on mobile phones and a method such as that

introduced in [4]. Furthermore, the GPS device is assumed to

be turned on right after a user initiates a sensing task to provide
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one or multiple reference locations for mobility prediction.

It can certainly be (automatically or manually) turned off

after necessary information is collected. In this way, a mobile

user can keep track of where he/she is during the sensing

procedure. In addition, every time a mobile user enters a new

road segment (which can be detected by the mobile phone by

measuring the distance travelled and detecting the direction

change using an accelerometer and a digital compass), a short

report message will be automatically sent to a server by his/her

mobile phone. Note that in this section, a road segment is

defined by two intersections, which may be different from the

“road” (which may include a set of consecutive road segments)

considered in the last section.

Both heuristic algorithms are used by a server to calculate

a sensing schedule which will then be broadcast to mobile

users. The first algorithm can be viewed as a realistic way to

apply the optimal algorithms presented above. The basic idea

is to sequentially use an algorithm presented above with partial

trajectories that can be predicted to find out how to sense for

the next certain period of time. We call this algorithm the

prediction-based algorithm, which is presented as follows.

Algorithm 2 The prediction-based algorithm

Step 1 Predict users’ moving trajectories (until the earliest

time a user will enter a new road segment) according

to their current locations and mobility information;

Generate virtual sensors according to the predicted

partial trajectories;

Step 2 Based on these virtual sensors, construct a connected

VSG and apply the optimal MECSS or FECSS al-

gorithm to calculate a new sensing schedule and

broadcast it to mobile users;

Step 3 Update the target region by removing the road seg-

ments that have been covered;

Update the number of times each user has already

sensed;

if (Receive a report)

if (Roads in the target region is fully covered

or time is up)

return ;

else goto Step 1;

endif

endif

In this algorithm, we do NOT predict how a user will do

in an intersection (make a turn, go straight, or even u-turn),

which is hard. Instead, we apply an algorithm to predict how

the user will move towards the intersection he is facing, from

which we can obtain a partial trajectory (for each mobile

user) that characterizes his movement from current location

to wherever he will reach at the earliest time a user (himself

or another one) will reach an intersection. Note that any

prediction algorithm (e.g., an application-specific prediction

algorithm) can be applied here. In the simulation, we used a

simple but practical method, which assumes that the user will

move towards the intersection he is facing without changing

his direction or speed. The VSG constructed based on partial

trajectories may not be connected. We simply connect discon-

nected components (if there are any) by connecting vertices on

the edge to produce a connected graph. In Step 2, every time

the same algorithm, the optimal MECSS or FECSS algorithm,

is applied, however, the input changes over time because the

algorithm needs to take account of the portions of roads that

have been covered as well as the number of times each user

has already sensed. In the simulation, we used the optimal

FECSS algorithm. Obviously, the prediction-based algorithm

does not always yield optimal solutions, however, we show

that it works fine on average cases via simulations.

This second algorithm uses a function of a couple of

sensing-related factors to make sensing decisions for mobile

users. Hence, we call it the function-based algorithm, which

is formally presented as Algorithm 3.

Algorithm 3 The function-based algorithm

Step 1 Generate virtual sensors according to the roads in

the target region to make sure all the roads are fully

covered;

Step 2 Select a minimum subset of virtual sensors that can

cover all the roads in the target region using the

MECSS algorithm and store them in VS ;

Step 3 while (1)
if (Receive a report about a new road segment L)

if (V L
S 6= Ø)

Use a function to determine the number J of

virtual sensors in V L
S that need to be used;

Notify the user to use the first J virtual

sensors and remove them from V L
S ;

endif

if (VS = Ø or time is up) return ;

endif

endif

endwhile

First, this algorithm generates virtual sensors on the roads

in the target region to make sure all the roads are fully covered

and tries to find a sensing schedule with a minimum subset

of virtual sensors (i.e., a minimum number of sensing times)

to cover all the roads in the target region. This can be easily

done by applying the optimal MECSS algorithm described

above with wi(i ∈ {1, · · · , N}) set to 1.

Again, we assume that when a user enters a new road

segment L, it will notify the server with a report message.

Then the server needs to determine how to make this user

sense in this new segment. In the algorithm, V L
S ⊆ VS is the

subset of virtual sensors on L that are selected in the second

step. The V L
S is updated every time after some virtual sensors

are used (i.e., some users used their sensors to sense at times

and locations specified by these virtual sensors).

Our function-based algorithm can rather be considered a

general optimization framework that uses a sensing-related

function to determine how many times a user should sense in

the road segment he/she enters. Any function can be used here,

however, it may not lead to good performance. Here are some

guidelines for designing a “good” function: 1) The function

value should decrease with the number of times this user has

already sensed for fairness purpose. 2) It should increase with
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the decrease of time left to perform the sensing task. 3) If no

(or almost no) time left, J = |V S
L |, where J is the value

returned by the function. We suggest to use the following

exponential function in the algorithm:

f(t, T, q, q, c) = ⌈e−c
q

q
t
T |V L

S |⌉, (8)

where t and T are the time left to complete the sensing task

and the deadline respectively; q and q are the number of times

this user has already sensed and q is the average number of

sensing times among all users. c is a tunable parameter. This

function certainly satisfies the three requirements mentioned

above and its values fall in the range (0, |V L
S |]. Note that |V L

S |
gives the number of virtual sensors left for use. Furthermore,

the value of c can be set in a certain way to achieve a good

tradeoff between coverage and fairness. Specifically, a smaller

c can ensure coverage but may lead to unfair sensing schedule

(some users’ phones may be abused!); however, a larger c
leads to fair sensing but may result in loss of coverage. We

performed simulations to evaluate the performance of this

function and to investigate what is the best value for the

constant c, which will be discussed in details later. Certainly,

some other application-specific factors may be brought into

the function to (hopefully) improve the performance further.

But we try to design a general approach here, and we found

that this algorithm with the function in (8) performed very

well from simulation results.

V. SIMULATION RESULTS

In this section, we present and discuss simulation results to

show the performance of the proposed algorithms.

In the simulation, WiFi signal sensing was considered to

be our application. We selected three popular Android-based

smart phones, Google Nexus S [15], Samsung I9000 and

S5830 [19], as our sensing devices. The energy consumed by

these phones for conducting a WiFi scan was measured by the

Monsoon power monitor [12] (particularly designed for mobile

phones), which are summarized in the following table. In the

simulation, the mobile phone of a user was randomly selected

from these three kinds of Android phones. The sensing range

r was set to 7 meters. Since most of current mobile phone

sensing projects were conducted in urban areas, we picked

a typical urban area to carry out simulation runs. As shown

in Fig. 2 obtained from the Google Map, the target region is

located at Manhattan, NY, which spans 4 blocks from west to

east with a total length of 1.135km and 4 blocks from south

to north with a total width of 0.319 km, and includes the

6th,7th,8th Avenues and the 45th, 46th,47th Streets.

TABLE II
ENERGY CONSUMPTION OF A WIFI SCAN

Phone Models Energy Consumption(µAh)

Google Nexus S 30.99
Samsung S5830 16.25
Samsung I9000 54.08

We used a mobility model similar to the well-known Man-

hattan model [2] to generate mobile users’ moving trajectories.

Specifically, each user was assumed to enter the target region

from a road at a random time, randomly pick a speed from

{2, 4} meters per second, move towards an intersection, and

then move straight ahead with a probability of 50% and turn

left or right with equal probabilities (i.e., 25%). The trajectory

of each user was constructed with evenly paced sample points

(6 meters between two consecutive ones) and points on critical

locations (such as intersections and road heads.) The location

data were collected from the Google Map using its API.

Fig. 2. The target region

We compared our algorithms, the prediction-based algo-

rithm (labeled as ”Prediction-Based”), the function-based al-

gorithm (labeled as ”Function-Based”), the optimal MECSS

algorithm (labeled as “MinTotalEnergy”), the optimal FECSS

algorithm (labeled as “FECSS”) against a baseline approach

in which every user performs a WiFi scan every 3 seconds.

The total energy consumption, the variance of the number of

sensing times, the maximum number of sensing times were

used as performance metrics to show the energy consumption

as well as fairness. In the simulation scenario, we increased

the number of users from 25 to 50 with 5 as the step size.

The simulation results are presented in Figs. 3–6.
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Fig. 3. The total energy consumption

From these simulation results, we can make the following

observations.

1) From Fig. 3, we can see that in terms of total energy

consumption, all the proposed algorithms perform very well.

Specifically, compared to the baseline approach, the opti-

mal MECSS algorithm, the optimal FECSS algorithm, the

prediction-based algorithm and the function-based algorithm

significantly reduce energy consumption by 91%, 80%, 80%
and 82% respectively, on average. The optimal MECSS algo-

rithm is certainly the best in terms of this metric. The optimal

FECSS algorithm tries to minimize total energy consumption
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Fig. 6. The number of sensing times VS. the sorted user ID

under the constraint of achieving the min-max number of sens-

ing times. Therefore, the total energy consumption given by

this algorithm is larger than the minimum value. In addition,

the function-based algorithm perform very well: close to the

optimal MECSS algorithm and better than the prediction-based

algorithm and the optimal FECSS algorithm (in terms of total

energy consumption).

2) In Fig. 4, we show the fairness of the sensing schedules

given by each algorithm in terms of the maximum number

of sensing times. Since one of the constraints of the FECSS

problem is to achieve the min-max number of sensing times.

Therefore, we first used the maximum number of sensing times

as a metric to evaluate the fairness performance. Clearly, the

optimal FECSS algorithm is the best in terms of this metric

since it is guaranteed to produce a solution in which the

maximum number of sensing times is minimum among all

possible solutions. This was verified by the results in Fig. 4.

None of the other four algorithms can provide any guarantee

for this metric. Not surprisingly, the baseline approach still

performs worst. This is because the number of sensing times

given by the baseline approach depends on how long a user

stays in the target region, which can be arbitrarily large. An

interesting observation is that the function-based algorithm

outperforms both the optimal MECSS algorithm and the

prediction-based algorithm.

3) In Fig. 5, we also used the variance of the number

of sensing times as a metric to evaluate the fairness per-

formance of algorithms. For all algorithms presented here,

their performance in terms of variance matches that in terms

of the maximum number of sensing times. Specifically, the

optimal FECSS algorithm performs best as expected and the

baseline approach is still the worst one. The function-based

algorithm performs well too. On average, the optimal MECSS

algorithm, the optimal FECSS algorithm, the prediction-based

algorithm and the function-based algorithm outperform the

baseline approach by 89%, 98%, 72% and 93% respectively.

In addition, we also present a bar graph in Fig. 6 to show

how the number of sensing times is distributed over 25 users.

In this figure, x-axis is the sorted user ID. As can be clearly

seen, the number of user sensing times is distributed quite

evenly over all the users if the optimal FECSS algorithm

is used to determine the sensing schedule. If the baseline

approach is used, every user needs to sense a few times,

however, the distribution is not even at all.

4) From Fig. 3, we can also see that the total energy

consumption given by a proposed algorithm does not in-

crease (decreases slowly in most cases) with the number of

users. As long as a sensing task is undertaken by mobile

users in the target region collaboratively, more users usually

offer more flexibility for sensing scheduling, which should

better performance on energy consumption. As expected, the

total energy consumption given by the baseline approach

increases sharply with the number of users. This is because

with this algorithm, each user senses individually without

any collaborations. Hence, increasing the number of users

does not necessarily bring any benefits. This observation well

justifies the advantage of using collaborative sensing. Similar

observations can be made for the other two metrics from

Figs. 4–5.

In short, we can make two conclusions from the discussions

above: 1) Compared to traditional mobile phone sensing with-

out collaborations, collaborative sensing significantly reduces

energy consumption. 2) The proposed function-based algo-

rithm perform well in terms of both total energy consumption

and fairness.

Since the function-based algorithm seems a promising

method for collaborative sensing, we decided to study it further

via simulation by investigating how the value of c (the tunable
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parameter in the exponential function) affects fairness. In this

scenario, N = 50 and we used the same input as before. From

the results in Figs. 7–8, we can see that the maximum number

of sensing times and the variance given by the algorithm

decrease with the value of c as expected. However, we found

that if we increased it to a value larger than 2, we lost full

coverage of some roads in the target region in some cases,

which is not acceptable.
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VI. CONCLUSIONS

In this paper, we proposed to leverage cloud-assisted col-

laborative sensing to reduce energy consumption for mobile

phone sensing applications. By assuming the moving trajectory

of each mobile user is known in advance, we presented a

polynomial-time algorithm to obtain minimum energy sensing

schedules, which can be used to show potential energy savings

that can be brought by collaborative sensing and can serve as

a benchmark for performance evaluation. We also presented

an algorithm to achieve a good tradeoff between total energy

consumption and fairness. Under realistic assumptions, we

presented two practical and effective heuristic algorithms: the

prediction-based algorithm and the function-based algorithm.

It has been shown by simulation results based on real en-

ergy consumption and location data that compared to tra-

ditional sensing without collaborations, collaborative sensing

significantly reduces energy consumption, and the proposed

function-based algorithm performs well in terms of both total

energy consumption and fairness.
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