
SOR: An Objective Ranking System Based on
Mobile Phone Sensing

Xiang Sheng†, Jian Tang†, Jing Wang†, Chenfei Gao† and Guoliang Xue‡

Department of Electrical Engineering and Computer Science†

Syracuse University, Syracuse, NY, 13244.
Email: {xsheng, jtang02, jwang93@syr.edu, cgao03@syr.edu}@syr.edu

Arizona State University, Tempe, AZ, 85287.‡ Email: xue@asu.edu

Abstract—Currently, a few online review and recommendation
systems (such as Yelp and TripAdvisor) have attracted millions
of users and are gaining increasing popularity. They usually
rate and rank places and attractions based on subjective ratings
provided by users. In this paper, we present design, implementa-
tion and evaluation of a mobile phone Sensing based Objective
Ranking (SOR) system, which ranks a target place based on
data collected via mobile phone sensing. Our system has the
following desirable features: 1) it is easy to use; 2) its architecture
is so scalable that various embedded and external sensors can
be easily integrated into it; 3) an online scheduling algorithm
is proposed and used to schedule sensing activities for coverage
maximization, which has a constant approximation ratio of 1/2;
4)a personalizable ranking algorithm is developed and used to
rank target places based on various sensor readings and user
preferences. We validate and evaluate SOR via both field tests
(using real hiking trails and coffee shops in Syracuse, NY as tar-
get places) and simulation. The field-testing results show that data
collected and processed by SOR can well capture characteristics
of target places, and personalizable rankings produced by SOR
can well match user preferences. In addition, simulation results
well justify effectiveness of the proposed scheduling algorithm.

Index Terms—Mobile Phone Sensing, Scheduling, Ranking,
Mobile Computing.

I. INTRODUCTION

Mobile phones have evolved as the most important com-
munication and entertainment devices in people’s daily life.
Many people, however, are not aware that a mobile phone
can serve as a powerful sensing device. Most of modern
smartphones (such as iPhone5, Google Nexus4, etc.) are
also equipped with a rich set of embedded sensors such as
camera, GPS, WiFi/3G/4G interfaces, accelerometer, digital
compass, gyroscope, microphone and so on. Moreover, ex-
ternal sensors can also be connected to a mobile phone via
its Bluetooth interface. For example, as shown in Fig. 1,
Sensordrone [27] is a portable and wearable multisensor that
can turn a smartphone into an environmental monitor. This
small device is equipped with 10 different sensors, including
multiple gas sensors, a non-contact thermometer, a humidity
sensor, a temperature sensor, a light sensor, a color sensor and
a pressure sensor. It can even be connected to more sensors
via an expansion connector. Other examples include the well-
known Google Glass [11] and Fitbit [8]. These embedded and

This research was supported in part by NSF grants #1218203, #1217611
and #1113398. The information reported here does not reflect the position or
the policy of the federal government.

Fig. 1. An external sensor: Sensordrone [27]

TaskTaskTask

TaskTaskData

(1) Participation
 via scan (2) Sensing tasks (3)Sensed data

Mobile App

Mobile user

Sensing Servers

Fig. 2. An overview of SOR

external sensors can enable attractive sensing applications in
various domains [16] such as environmental monitoring, social
network, healthcare, transportation, safety, etc.

Currently, a few online review and recommendation systems
have attracted millions of users and are gaining increasing
popularity. For example, Yelp serves as an online urban guide,
which provides user reviews, recommendations and rankings
of a large variety of local businesses including restaurants,
shops, theaters, etc. Another typical example is TripAdvisor,
which has become the world’s largest website for travelers. It
provides user reviews, ratings and ranks for hotels, restaurants,
attractions in different places across the whole world. These
systems usually rate and rank target places and attractions
based on subjective ratings and opinions provided by users.

Data collected via mobile phone sensing can be used to
evaluate a target place. For example, for a coffee shop, based
on readings from microphones, we can know if it is quiet;
based on readings from light sensors, we can know if it
is bright; based on readings from temperature sensors (on

sensordrones), we can know if it is warm. In this paper, we
present design, implementation and evaluation of an objective
ranking system, which ranks target places based on (objective)
data collected via mobile phone sensing. Our objective is not
to replace the current ranking/recommendation systems that
are based on subjective user ratings but to enhance them with
objective data collected via various sensors to provide more
comprehensive and objective rankings and recommendations
for users.

The proposed mobile phone Sensing based Objective Rank-
ing (SOR) system is illustrated in Fig. 2. In order to use it, the
following components must be deployed properly: 1) Mobile
Application: a mobile application needs to be installed on each
participating mobile phone. 2) Sensing Server: One or multiple
sensing servers need to be deployed to collect sensed data
from mobile phones. 3) 2D Barcode: A 2D barcode needs to
be deployed in a target place to trigger a sensing procedure.
Next, we describe how the system works:
1) If a mobile user decides to participate, he/she opens the

mobile application and scans the 2D barcode in the target
place, which will sends a notification (with information
about the target place contained in the barcode) to a
sensing server and trigger a sensing procedure.

2) A sensing server detects the incoming participation request,
calculates a sensing schedule and sends the corresponding
sensing tasks to the mobile phone.

3) The mobile application operates sensors to sense according
to the provided schedule and sends sensed data back to a
sensing server.

4) The sensing server collects and processes sensed data from
mobile phones, and stores them into a database.

5) A ranking program ranks the target place based on data
collected from mobile phones and user preferences.

It is quite challenging to design such an objective ranking
system. First, in order to provide a comprehensive view for
target places, the system needs to leverage a large variety of
embedded and external sensors to collect various data. Second,
a mobile user may participate at any time. The system needs to
schedule sensing activities properly to ensure a good coverage
over a given scheduling period. It is certainly not desirable
to have sensor readings clustered on certain short periods of
time. In addition, the system needs to be able to rank a target
place based on various sensed data. In the following, the term
“mobile user” refers to a person who participates in sensing
activities and contributes sensed data; while the term “user”
refers to a person who uses SOR to find out rankings and
recommendations. A person can certainly be both user and
mobile user.

In our design, we carefully address these challenges. SOR
has the following desirable features: 1) it is easy to use
because an easy 2D barcode scan triggers a sensing procedure,
which is then automatically done without user involvement;
2) its architecture is so scalable that various embedded and
external sensors can be easily integrated into it; 3) an online
scheduling algorithm is proposed and used to schedule sensing
activities for coverage maximization, which has a constant
approximation ratio of 1/2; 4) a personalizable ranking al-
gorithm is developed and used to rank target places based on

various sensor readings and user preferences. We summarize
our contributions in the following:
1) We design and implement an objective ranking system

based on mobile phone sensing, which is the first of its
kind.

2) We develop theoretically well-founded and practically ef-
ficient scheduling and ranking for the proposed system.

3) We justify effectiveness of the proposed system and al-
gorithms via both field tests (using real hiking trails
and coffee shops in Syracuse, NY as target places) and
simulation.

Note that the proposed system, ranking algorithm and
sensed data can be integrated into existing subjective ranking
and recommendation systems to provide a more comprehen-
sive and objective view of target places for users. However,
due to space limitation, this paper is only focused on mobile
phone sensing and ranking based on objective data collected
by mobile phones.

The rest of the paper is organized as follows: We present
the software architecture and implementation details of the
proposed system in Section II. The proposed scheduling and
ranking algorithms are presented in Section III and Section IV
respectively. Experimental and simulation results are presented
and analyzed in Section V. We discuss related works in
Section VI and conclude the paper in Section VII.

II. DESIGN AND IMPLEMENTATION OF SOR

In this section, we discuss design and implementation
details of SOR, which consists of two major components:
Mobile Frontend (i.e., the mobile application running on each
participating smartphone) and Sensing Server (backend).

A. Mobile Frontend

Sensing Server

URL

Message
Body

Message Handler

Local
Preference
Manager

Task
Manager

Task
InstanceTask

InstanceTask
Instance

Management
Messages

Sensed
Data

Script
Interpreter

Sensor Manager Provider Register

Async
Fetch

Data
Ready

Motion
Sensor

Provider

API

Data Buffer

Async
Fetch

Data
Ready

Location
Provider

API

Data Buffer

Async
Fetch

Data
Ready

WiFi
Provider

API

Data Buffer

Acceler
ometer

Gyro
scope GPS Network WiFi

Async
Fetch

Data
Ready

SensorDrone
Provider

API

Data Buffer

Sensordrone

URL

Message
Body

URL

Message
Body

Scripts

Callbacks

Control Messages
(e.g. Schedules)

Fig. 3. The architecture of mobile frontend

We implemented the mobile frontend on the Android sys-
tem. It consists of the following components: Message Han-
dler, Local Preference Manager, Sensing Task Manager, Script

Interpreter, Sensor Manager, Providers, which are illustrated
in Fig. 3.

The Message Handler serves as an interface for commu-
nications between the mobile frontend and a sensing server.
In SOR, HTTP is used as the communication protocol. All
SOR-specific information is encoded as binary data and stored
in the message body of an HTTP message. In this way, we
can minimize traffic load and enhance security (since the
third party system does not know how to decode it). The
Message Handler is responsible for encoding/decoding the
message body. Every time when a sensing server needs a
mobile phone to undertake a sensing task, it will include all
necessary information (e.g., when to sense, how to sense,
etc) in an HTTP message, which will then be sent to the
Message Handler on the mobile frontend. How to sense, i.e.,
what data to acquire, is described using the Lua [18] scripting
language. Note that Lua is a powerful, fast, lightweight, and
embeddable scripting language. It combines simple procedural
syntax with powerful data description constructs based on as-
sociative arrays and extensible semantics, which make it quite
fit for sensing task description. Sample Lua scripts (with com-
ments) are presented in Fig. 4. Note that those functions such
as get_light_readings() and get_location() in
the scripts are functions defined by us and will be mapped to
the callback functions (for asynchronous data fetching).

—[[If Sensordrone is connected, get 5 light readings, with an interval of 2s]]—

if sensordrone_connected() then

get_light_readings(5, 2)

end

—[[If GPS query is permitted and the location data could be obtained,

then, get 2 GPS location readings; otherwise, get 2 coarse locations.]]—

if fine_location_permitted and gps_data_available() then

get_location(2, 'fine')

else

get_location(2, 'coarse')

end

Fig. 4. Lua scripts

The other functionalities of the Message Handler include:
1) it dispatches an incoming message to the intended receiver
(such as Task Manager, Preference Manager, etc). 2) It encodes
data obtained from sensors in a message and sends it to a
sensing server. 2) It can communicate with a Google server.
This is useful when a sensing server loses track of a particular
mobile phone, it can ask the mobile device to ping it via a
Google Cloud Messaging server. 3) It can prevent a mobile
phone from going to sleep during communications with a
server, which is implemented by using the Android system
API powerManager.newWakeupLock().

Each incoming task will be served by a task instance, which
will be hosted by a thread. The Task Manager keeps track of all
these task instances. A task instance sends the corresponding
Lua scripts to the Script Interpreter for translation. The
interpreter can interpret both Lua’s own functions and the
functions we defined for data acquisition. The script interpreter
tells the task instance which Java function to call to obtain

data from sensors since the Android system cannot recognize
Lua scripts. Note that security can be enforced here by only
allowing a white list of unharmful functions to be called. A
task instance is a self-contained component, which maintains
its own status (e.g, running, waiting for data, etc), call proper
API functions to acquire data from sensors, and manages data
collected from sensors. SOR is a multi-task system, where
concurrency is well supported. At one time, there could be
multiple task instances running in SOR, which can acquire
data from one or multiple sensors simultaneously.

The architecture of the mobile frontend is scalable because
various sensors can be easily integrated into it, which is
achieved by Sensor Manager and Providers. If we want to
make SOR support a new sensor (embedded or external), we
only need to create a Provider for that sensor. A Provider
is basically a software component which actually operates
embedded and external sensors using APIs provided by the
Android system and third party respectively to collect data.
Note that each Provider maintains a data buffer which buffers
data collected from its sensor and can even share them with
multiple different tasks. In this way, energy consumed for sens-
ing can be reduced. Note that data acquisition from a sensor
is done in an asynchronous manner such that an operation
will not block or be blocked by others. When a new sensor is
integrated into SOR, the corresponding Provider needs to be
registered with the Sensor Manager via the Provider Register,
which keeps a list of currently supported sensors and the
corresponding data acquisition functions we defined (such
as get_light_readings() and get_location()).
When a task instance requests data by calling such a data
acquisition function, the Sensor Manager directs the call to the
corresponding Provider to actually acquire data from sensors.
Moreover, the manager can cancel data acquisition if timeout.
Currently, SOR can support all sensors available on a Google
Nexus4 smartphone and all sensors available on a Sensordrone.

SOR also allows a user to specify how sensors on his/her
phone can be used to participate in sensing activities. For
example, a user may not want to expose his/her exact locations
to our system, then he/she can disallow the phone to return
locations provided by GPS. These preferences are maintained
by the Local Preference Manager as shown in the figure.

B. Sensing Server

A sensing server consists of User Info Manager, Application
Manager, Participation Manager, Task Scheduler, Data Proces-
sor, Personalizable Ranker and Database, which are illustrated
in Fig. 5.

The Message Handler in the sensing server is quite similar
to its counterpart in the mobile frontend. It communicates
with the mobile frontend using HTTP and dispatches incoming
message to different components. Note that if it detects that
the received message includes sensed data, it will directly
store the binary message body into the database, which will
be processed later by the Data Processor.

The User Info Manager maintains user information, in-
cluding userID, name, token (used to uniquely identify a
mobile device), etc. Here, an application is defined as a

Data
Processor

Personalizable
Ranker

Visualization

Mobile Frontend

Message Handler

Database

UserInfo
Manager

Application
Manager

Participation
Manager

Task
Scheduler

Binary
Raw
Data

Schedules

Participation
Info

Schedules

Raw
Data

Feature
Data

Feature
Data
and

Preferences

Rankings

URL

Message
Body

URL

Message
Body

URL

Message
Body

Control Messages
(e.g. Schedules)

Fig. 5. The architecture of sensing server

procedure of acquiring data from sensors for a target place,
which may include multiple sensing tasks. The Application
Manager manages all necessary information related to each
application, including its AppID, its creator (which could be
the owner/manager/operator of the corresponding target place),
and the Lua scripts defining the corresponding data acquisition
procedure (See Fig. 4 for an example).

The Participation Manager keeps track of a list of sensing
tasks and their information, including participating userID,
the corresponding token, the corresponding application, the
location of the target place, the sensing budget and its status
(such as running, waiting for sensing schedule, finished, error,
etc). Note that the sensing budget is an integer number
specifying how many times the corresponding mobile user can
perform data acquisition specified by the corresponding Lua
scripts. Initially, it is set to the maximum number of times
the mobile user is willing to acquire data from its sensors
and it is updated at runtime. Every time when a mobile user
scans a 2D barcode, the Participation Manager will first verify
whether the user is actually in the target place by acquiring
its location and comparing it against the location stored in the
Application Manager, and then create a task for it if the user is
considered as a truthful user. Moreover, a mobile user’s status
in the Participation Manager will be changed to “finished” if
according to his/her location, he/she leaves the target place.

For each application, the Sensing Scheduler applies an
online algorithm to calculate a sensing schedule (that specifies
when to sense for each participating user) for a scheduling
period based on runtime participation information (such as
current participating users, their sensing budgets, etc) provided
by the Participation Manager (via the database). The duration
of a scheduling period can be specified by the creator of the
application according to his/her needs. The Sensing Scheduler
will also distribute the calculated schedules along with the
corresponding Lua scripts to participating mobile phones, and
store them into the database. We will describe the proposed
scheduling algorithm in greater details in Section III.

In SOR, we chose the PostgreSQL [23] for storing data,
which is an open-source Object Relational Database Manage-
ment System (ORDBMS) with an emphasis on extensibility

and standards compliance. The Data Processor periodically
checks if there are any binary sensed data in the database,
and if any, it decodes the data and stores useful information
into corresponding tables in the database. Moreover, it also
processes raw data to generate more meaningful data for
various sensing features (temperature, humidity, roughness of
road surface, etc), which will then be stored into the database
to serve as input for the Personalizable Ranker. The processed
data are called feature data, which are usually statistics
(average, variance, etc) of raw data. The Personalizable Ranker
leverages a personalizable ranking algorithm to rank target
places according to feature data and user preferences. Both
data processing and personalizable ranking will be discussed
in Section IV. We also implemented a simple Visualization
module, which can generate figures for feature data in the
database such that users can view them easily.

III. SCHEDULING ALGORITHM

In this section, we will describe our sensing coverage model,
and then present the online scheduling algorithm used in the
SOR system.

In our sensing coverage model, we use a set T of N time
instants to divide the time domain within a sensing scheduling
period [tS , tE] into small time intervals with equal durations.
The measurements are scheduled to be taken only at these time
instants. Of course, the larger the N , the more accurate the
measurement, however, the higher the sensing cost (such as
energy consumption). If a sensing feature is measured at time
ti, then we say time instant tj is covered with a probability
of p(ti, tj), which means that if a measurement is taken at ti,
the reading at tj stays the same with a probability of p(ti, tj).
The closer tj is to ti, the higher the probability becomes.
So a bell-shaped Guassian distribution N (µ, σ) is used to
model these probabilities. Different variance σ can be used to
model different sensing features. A large σ is used for those
sensing features whose readings do not change drastically over
time (such as temperature, humidity, etc), while a small σ
is used for those whose readings may change quickly (such
as acceleration, orientation, etc). Note that our algorithm is
general enough such that other distribution models can also
be applied here.

A sensing schedule can be given as a set Φ of time instants
within a given scheduling period, which specifies when to
sense for the corresponding sensors on mobile phones. The
probability that time instant tj is covered by a given sensing
schedule Φ is:

p(tj ,Φ) = 1−
∏
ti∈Φ

(1− p(ti, tj)). (1)

Note that the coverage model discussed here is in the time
domain, whereas, most other coverage models are in the spatial
domain.

Suppose that we are given a set T of equally spaced instants
within a scheduling period [tS , tE] as well as the duration a
mobile user k participating in sensing activities [tSk , t

E
k], then

Tk ⊆ T is a subset of time instants in T that falls in [tSk , t
E
k].

A sensing schedule of user k, Φk, is a subset of time instants
in Tk. In addition, every mobile user k has a sensing budget

NB
k , which is the number of times he/she is willing to sense

during a scheduling period. We are interested in solving the
following problem:

max
{Φ1,··· ,ΦK}

∑
tj∈T

K∑
k=1

p(tj ,Φk) (2)

Subject to:
|Φk| ≤ NB

k , k ∈ {1, · · · ,K}. (3)

The scheduling problem is to maximize the total sensing
coverage probability by selecting a sensing schedule Φk

for each participating mobile user k, with a cardinality no
more than the given budget NB

k . The goal here is to spread
measurements across the whole sensing period and in the
meanwhile, ensure fairness by preventing certain mobile users
from being abused.

We construct a collection of subsets of the ground set T,
Λ = {Ψ : Ψ ⊆ T, |Ψ

∩
Tk| ≤ NB

k , k ∈ {1, 2, · · · ,K}}.
Next, we show that (T,Λ) is a matroid.

Definition 1 (Matroid [10]): A pair (Q,Z) consisting of a
ground set Q and a collection Z of subsets of Q is a matroid
if:
1) ∅ ∈ Z;
2) If X ∈ Z and Y ⊂ X , then Y ∈ Z;
3) for all X,Y ∈ Z, if |X| > |Y | then there exists some

x ∈ X \ Y such that Y
∪
{x} ∈ Z.

Theorem 1: (T,Λ) is a matroid.
Proof: It is easy to see that ∅ ∈ Λ. Suppose that Ψ1 ∈ Λ.

According to the definition of Λ, Ψ1 satisfies the constraint
|Ψ1

∩
Tk| ≤ NB

k , k ∈ {1, · · · ,K}. And if Ψ2 ⊂ Ψ1 then
we have |Ψ2

∩
Tk| ≤ |Ψ1

∩
Tk| ≤ NB

k , k ∈ {1, · · · ,K}.
So Ψ2 ∈ Λ.

We prove that condition 2) is also satisfied by contradiction.
Suppose that Ψ1 ∈ Λ,Ψ2 ∈ Λ, and |Ψ1| > |Ψ2|, but there
does not even exist any element x such that x ∈ Ψ1 \Ψ2 and
Ψ2

∪
{x} ∈ Λ. If this statement is true, then Ψ2

∪
{xk} >

NB
k , ∀xk ∈ {Ψ1 \ Ψ2}

∩
Tk, k ∈ {1, · · · ,K}. This means

for any k, if {Ψ1 \ Ψ2}
∩
Tk ̸= ∅, then |Ψ2

∩
Tk| = NB

k .
So |Ψ1

∩
Tk| ≤ |Ψ2

∩
Tk|, ∀{Ψ1 \ Ψ2}

∩
Tk ̸= ∅, k ∈

{1, · · · ,K}. And since {Ψ1\Ψ2} ⊂ Ψ1, and all the elements
in Ψ1

∩
Ψ2 are shared by both Ψ1 and Ψ2, |Ψ1| ≤ |Ψ2|,

which is in contradiction to our assumption. This completes
our proof.

The scheduling problem can be re-formulated as:

max
Ψ∈Λ

∑
tj∈T

p(tj ,Ψ). (4)

This scheduling problem falls in a class of problems of
maximizing a submodular set function over a matroid [10]
because its objective function f(Ψ) =

∑
tj∈T p(tj ,Ψ) has

been shown to be a non-negative, monotone and submodular
function in [31] and we show that (T,Λ) is a matroid in
Theorem 1. We present a simple greedy algorithm to solve it
in the following.

The basic idea of the proposed algorithm is to keep adding
into the solution the time instant that can result in the
maximum incremental coverage until no mobile users can

Algorithm 1 The sensing scheduling algorithm
Step 1 Ψ0 := ∅; l := 1;
Step 2 while ∃x ∈ T \Ψl−1 s.t. Ψl−1

∪
{x} ∈ Λ

x∗ := argmaxx′∈T\Ψl−1
f(Ψl−1

∪
{x′})

−f(Ψl−1);
Ψl := Ψl−1

∪
{x∗};

l := l + 1;
endwhile

Step 3 return Ψh;

be scheduled to sense more without violating their budget
constraints. The running time of this algorithm is O(|T|2 ·
g(|Λ|)), where g(|Λ|) is the running time for testing whether
Ψh−1

∪
{s} ∈ Λ or not. In our algorithm, this can be quickly

done in constant time by maintaining a counter for each mobile
user and checking if its value exceeds the given budget. So
the overall time complexity is O(|T|2) = O(N2). Hence the
proposed algorithm is time efficient.

In addition, according to Theorem 1, the scheduling problem
is to maximize a non-decreasing submodular set function over
a matroid. It has been shown in [10], that a simple greedy al-
gorithm (similar to that shown above) gives a 1

2 -approximation
for a class of such problems. Therefore, Algorithm 1 is a 1

2 -
approximation algorithm for the scheduling problem (4).

IV. DATA PROCESSING AND PERSONALIZABLE RANKING

In this section, we discuss how raw data collected from
mobile frontend are processed and fed to the ranking algorithm
as input to calculate ranks for a target place.

A. Data Processing

In SOR, for a target place, data collected by sensors of
certain type in a given scheduling period are stored as a set
of 3-tuples (t,∆t,d). t is the timestamp, whereas, ∆t is a
short period of time (typically several seconds). Note that SOR
takes multiple (instead of one) readings within [t, t + ∆t] to
ensure high sensing quality. The number of readings to be
taken during this period can be specified in the Lua scripts. d
is the corresponding set of readings.

Ranking is conducted based on values of a set of humanly
understandable features, such as temperature, WiFi signal
strength, roughness of road surface. For a target place, raw
data need to be processed to calculate a value for each feature,
which will then be used by the ranking algorithm as input.
Note that the methods for calculating these values from raw
data may vary with features. For example, for temperature,
we take an average over all temperature sensors’ readings;
however, for roughness of road surface, we take an average
of standard deviations of accelerometers’ readings within ∆t.
Readings from different types of sensors may be combined
to generate the value for a feature too. SOR calculates these
statistics (feature data) and stores them into the database.
When they are needed for ranking, they are read from the
database into a matrix H =< hij >, i ∈ {1, · · · , N}, j ∈
{1, · · · ,M}, where N and M are the numbers of target places
and features respectively. For simplicity, we focus on places

belonging to a certain category (such as coffee shop, hiking
trail, etc) here. SOR can certainly deal with multiple categories
by using multiple such matrices.

However, data in H cannot be directly used for ranking
since the purpose of ranking is to recommend suitable places
for individual users. If ranking is done on the absolute temper-
ature, then a very hot (or cold) place may be ranked one of top
places, which is certainly not preferred by most people. Hence,
our personalizable ranking algorithm will further process these
values based on user preferences, which will be discussed next.

B. Personalizable Ranking Algorithm

In this section, we present a personalizable ranking algo-
rithm based on user preferences. Our algorithm uses the same
sensed data as input for all users but can produce different
rankings for different users based on their preferences. The
input of the algorithm includes: 1) H =< hij >, i ∈
{1, · · · , N}, j ∈ {1, · · · ,M} (read from the database); 2)
U =< uj >, j ∈ {1, · · · ,M}, where uj is the value preferred
by the user on feature j; 3) W =< wj >, j ∈ {1, · · · ,M},
where wj is the weight given by the user on feature j to
express his/her emphasis; We outline the proposed algorithm
in the following and then explain every step in details.

Algorithm 2 Personalizable Ranking Algorithm
Step 1 Process H =< hij > further and store results

to a new matrix Γ =< γij > according to user
preferences by γij := |hij − uj |, i ∈ {1, · · · , N}, j ∈
{1, · · · ,M};

Step 2 Sort the target places in Γ =< γij > on the column
by column basis to produce an individual ranking
Rj for every feature j;

Step 3 Aggregate individual rankings to output a final rank-
ing based on W =< wj >, j ∈ {1, · · · ,M} using a
min-cost flow based algorithm (described below).

In the first step, the algorithm calculates the distances
between numbers in H and the values preferred by a user
and then store them into another N ×M matrix Γ =< γij >.
For example, suppose that the temperature (suppose it is the
jth feature) in target place i is hij , then γij := |hij − uj |,
where uj is the temperature preferred by the user. If the user
does not input a desirable temperature, the system provides a
default value, e.g. 73◦F, based on common sense. Moreover,
for some features (such WiFi signal strength), if it is always
the larger (the smaller) the better, then a very large (small)
default value is always used as the preferred value.

In the second step, for all target places belonging to a
category (such as coffee shop or hiking trail), the algorithm
produces a ranking Rj (i.e a sorted list) on each feature j
by sorting all the target places in the ascending order of the
corresponding feature values on the column by column basis.
We call such rankings individual rankings in the following.

In the third step, the algorithm aggregates individual rank-
ings produced (based on a single feature) in the second step

to generate the final ranking. In order to do it, we need a
metric measuring distance between two rankings. In SOR, the
Kemeney distance [14], [15] is chosen for this purpose since it
has been shown to have good spam resistance [7] and has been
widely used for ranking in various domains such as webpage
ranking, consensus and etc. Suppose that an index function
π(i,R) returns the index of item i (target place i in our case)
in ranking R.

Definition 2 (Kemeney Distance [14], [15]): The Kemeney
distance between two rankings R1 and R2,

dK(R1,R2) =

N∑
i=1

N∑
i′=1

1(sgn((π(i,R1)− π(i′,R1))

∗(π(i,R2)− π(i′,R2))) < 0),

(5)

where 1(·) is the indicator function and sgn(·) is the sign
function.

Intuitively, the Kemeney distance counts the number of
pairwise violations between two rankings. For example, given
two rankings of three items {A,B,C}:

R1 : A,B,C

R2 : B,C,A

(6)

then the Kemeney distance between them is dK(R1,R2) = 2,
since there are two pairwise violations, (A,B) and (A,C).

We consider personalizable ranking, which allows users to
emphasize (or de-emphasize) certain features by assigning
weights to them. Let Ω be a collection of M individual
rankings on all features Ω = {Rj : j ∈ {1, · · · ,M}}.
We come up with a new metric, called weighted K-ranking
distance, to evaluate the quality of a ranking based on user
preferences.

The weighted K-ranking distance from a ranking R to a
collection of individual rankings Ω is:

κK(R,Ω) =
M∑
j=1

wj ∗ dK(R,Rj), (7)

where wj is the weight assigned to feature j by the user. The
ranking problem is to find a ranking R∗ such that its weighted
ranking distance to Ω is minimized among all rankings, i.e.,

R∗ = argmin
R

κK(R,Ω). (8)

Unfortunately, as showed by [7], computing such an optimal
(aggregated) ranking R∗ is NP-hard, even for the unweighted
case with |Ω| = 4. So we need to have an effective heuristic
algorithm.

Spearman’s footrule distance [6], df (·), has been widely
used to approximate the Kemeney distance:

df (R1,R2) =
N∑
i=1

|π(i,R1)− π(i,R2)|, (9)

where R1 and R2 are two rankings as discussed above. The
footrule distance has the following property [6]:

dK(R1,R2) ≤ df (R1,R2) ≤ 2dK(R1,R2). (10)

Similarly, we define the weighted f-ranking distance as:

κf (R,Ω) =

M∑
j=1

wj ∗ df (R,Rj). (11)

Instead of solving the original ranking problem defined above,
we can solve a footrule distance based ranking problem:

R∗ = argmin
R

κf (R,Ω). (12)

It has been shown in [7] that the unweighted of the footrule
distance based ranking problem could be transferred to a
minimum cost perfect matching problem, which can be solved
efficiently in polynomial time.

Next, we show that our weighted version can be efficiently
solved by constructing an auxiliary flow graph and using a
min-cost flow based algorithm. First, we construct a flow graph
to assist computation G(V

∪
V′ ∪{s, z},E). In this graph,

each vertex vi ∈ V corresponds to a target place i and each
vertex vi′ ∈ V′ corresponds to a rank. There is a directed edge
e ∈ E from each vi ∈ V to every vi′ ∈ V′, whose cost is set
to

∑
Rj∈Ω wj ∗ |π(i,Rj)− i′| and capacity is set to 1. Note

that for a target place i, the cost here basically gives the sum
of distances to all individual rankings (suppose that its final
rank is i′). Moreover, to complete a flow graph, we introduce
a virtual source s, which has a directed edge to each vi ∈ V
with a cost of 0 and a capacity of 1. And, there is a virtual
sink z, which has a directed edge coming from each vi′ ∈ V ′

with a cost of 0 and a capacity of 1 too.
The importance of the flow graph lies in the fact that a

min-cost s− z flow with an amount of N on the graph gives
a ranking that minimizes the weighted f-ranking distance. It
is known that the min-cost flow in such a flow graph (whose
link capacities are all 1) can be efficiently found by a linear
programming based algorithm [1], which is guaranteed to
generate an integer flow since the corresponding co-efficient
matrix is totally unimodular. Moreover, it can be easily shown
that the optimal solution to our footrule distance based ranking
problem is a 1

2 -approximate solution to the original (Kemeney
distance based) problem due to the property (10) described
above.

V. VALIDATION AND PERFORMANCE EVALUATION

We validated and evaluated SOR via both field tests and
simulation. Specifically, we field-tested two kinds of places,
hiking trails and coffee shops, in or around the city of
Syracuse; and we evaluated the performance of the proposed
scheduling algorithm via simulation.

A. Field Tests for Hiking Trails

In the first sets of field tests, we collected data from three
hiking trails in or around Syracuse, namely, the Green Lake
Trail [12] (in the Green Lake State Park), the Long Trail and
the Cliff Trail(both of them are in the Clark Reservation [3])
The field tests were conducted during 11:00AM-2:00PM Nov.
17, 2013. In each test, there were 7 participating mobile
phones, which are all Google’s Nexus4 smartphones.

For hiking trails, we collected data of 5 sensing features
that hikers usually care about most (listed below). We used the
following methods to process sensed data to produce values for
each feature: 1) temperature: it is an average of all temperature
sensor readings; 2) humidity: it is an average of all humidity
sensor readings; 3) roughness of road surface: it is an average
of the standard deviations of all accelerometer’s readings
within ∆t (a short sampling period described in Section IV);
4) curvature: it is calculated based on GPS locations using the
method presented in [17]. 5) altitude change: it is the standard
deviation of averages of all altitude sensor readings within ∆t.
The feature data are presented in Figure 6.

In order to justify effectiveness of personalizable ranking
in SOR, we came up with three virtual hikers, namely,
Alice, Bob and Chris, whose preferences are described using
hiker profiles shown in Fig. 7. Note that a user can express
his/her preferences by setting preferred feature values and
weights. The weight can be set to an integer in {0, 1, 2, 3, 4, 5}
with ‘0’ meaning that he/she doesn’t care and ‘5’ indicating
he/she really cares. For example, Alice is assumed to be an
experienced hiker who prefers difficult trails. So she sets all
the preferred values for the roughness, curvature and altitude
change to MAX (a relatively large integer pre-configured in
SOR), and sets all their weights to 5. We then present the
rankings of the three target hiking trails computed by SOR
via mobile phone sensing for three hikers in Table I.

TABLE I
RANKINGS OF HIKING TRAILS COMPUTED BY SOR

User No. 1 No. 2 No. 3
Alice Cliff Trail Long Trail Green Lake Trail
Bob Long Trail Cliff Trail Green Lake Trail
Chris Green Lake Trail Long Trail Cliff Trail

To validate these ranking results, we established the
ground truths using pictures taken during field tests and real
user comments collected from Internet via Google (mainly
from www.cnyhiking.com, www.outdoorexperiencereview.com
www.hikespeak.com, nysparks.com, etc), which are shown in
Fig. 8 and Fig. 9 respectively. Note that in the table, we
also summarize user comments as key opinions for quick
references. From these ground truths, we can see that the
Cliff Trail is rocky so it is indeed a difficult trail. The other
two trails are flat and fairly easy, especially the Green Lake
trail (according to a real user comment “...This trail is almost
entirely flat”). In addition, the Green Lake Trail is around
a lake (see its picture) so it is supposed to be humid and
a little cooler. According to rankings produced for Alice
(an experienced hiker who prefers difficult trails), Cliff Trail
is ranked No. 1, followed by the Long Rail (which is a
little more difficult than the Green Lake Trail). Similarly, for
Bob (a beginner who likes dry and even trails), the Long
Trail is recommended as the top choice, followed by the
Cliff trail, which is difficult but drier than the Green Lake
Trail. Since Bob cares more about humidity than difficulty
(according to the corresponding weights), so Cliff Trail is
ranked higher than Green Lake Trail. For Chris (a beginner
who likes jogging near a lake/sea/river), the Green Lake Trails

Green Lake Long Cliff
0

10

20

30

40

50

60

T
em

p
er

at
u

re
(F

°)

(a) Temperature

Green Lake Long Cliff
0

10

20

30

40

50

60

H
u

m
id

it
y(

%
)

(b) Humidity

Green Lake Long Cliff
0

0.5

1

1.5

2

R
o

u
g

h
n

es
s(

m
2 /S

2)

(c) Roughness of road surface

Green Lake Long Cliff
0

20

40

60

80

C
u

rv
at

u
re

(d
eg

re
e)

(d) Curvature

Green Lake Long Cliff
0

5

10

15

20

25

A
lt

it
u

d
e

C
h

an
g

e(
fe

et
)

(e) Altitude change

Fig. 6. Feature data for hiking trails

(a) Alice’s profile (b) Bob’s profile (c) Chris’s profile

Fig. 7. Hiker profiles

Fig. 8. Ground truth 1: pictures of the target hiking trails

Fig. 9. Ground truth 2: real user comments for the target hiking trails

is certainly recommended as the first choice. We can conclude
that data collected and processed by SOR can well capture
characteristics of target places, and personalizable rankings
produced by SOR can well match user preferences.

B. Field Tests for Coffee Shops

In the second sets of field tests, we collected data from three
coffee shops in Syracuse, namely, the Tim Hortons (985 East
Brighton Avenue Syracuse, NY 13205), the Barns & Noble

(B&N) Cafe (3454 E. Erie Blvd, Syracuse, NY, 13214) and a
Starbucks (177 Marshall St, Syracuse, NY 13210). The field
tests were conducted during 11:00AM-2:00PM Nov. 15, 2013.
In each test, there were 12 participating mobile phones, which
are all Google’s Nexus4 smartphones.

For coffee shops, we collected data of 4 sensing features
that customers usually care about most: 1) temperature (tem-
perature sensor on the Sensordrone), 2) brightness (light sensor
on the Sensordrone), 3) WiFi signal strength (WiFi interface),
and 4) background noise level (microphone). For all these
four features, we took averages of all corresponding sensor
readings. The feature data are presented in Figure 10.

(a) David’s profile (b) Emma’s profile

Fig. 11. Customer profiles

Similarly, we came up with two virtual customers, namely,
David and Emma, whose preferences are described using
customer profiles (with preferred values and weights) shown in
Fig. 11. We then present the rankings of the three target coffee
shops computed by SOR for both customers in Table II.

Again, we compare the ranking results with ground truths,
which are pictures taken during field tests and real user com-
ments collected from Internet via Google (mainly from Yelp
and Foursquare), shown in Fig. 12 and Fig. 13 respectively.

From the ground truths, we can see that the Starbucks is
crowded, noisy and dark. While the other two coffee shops

Tim Hortons Starbucks B&N Cafe
0

10

20

30

40

50

60

70

80

T
em

p
er

at
u

re
(d

eg
re

e)

(a) Temperature

Tim Hortons Starbucks B&N Cafe
0

200

400

600

800

1000

1200

B
ri

g
h

tn
es

s(
L

u
x)

(b) Brightness

Tim Hortons Starbucks B&N Cafe
0

0.5

1

1.5

2

2.5
x 10

4

B
ac

kg
ro

u
n

d
 N

o
is

e

(c) Background noise

Tim Hortons Starbucks B&N Cafe
−80

−70

−60

−50

−40

−30

−20

−10

0

W
ifi

(d
B

m
)

(d) Wifi

Fig. 10. Feature data for coffee shops

TABLE II
RANKINGS OF COFFEE SHOPS COMPUTED BY SOR

User No. 1 No. 2 No. 3
David Starbucks B&N Cafe Tim Hortons
Emma B&N Cafe Tim Hortons Starbucks

Fig. 12. Ground truth 1: pictures of the target coffee shops

Fig. 13. Ground truth 2: real user comments for the target coffee shops

are quiet and bright. The Tim Hortons is a little colder than
the B&N Cafe, however, very bright due to a big window
(See Fig. 12). David is a social person who likes to hang out
with friends in coffee shops so he prefers a not-so-bright and
warm place but does not really care about noise. According to
the ranking produced for him, the Starbucks is ranked No. 1,
followed by the B&N Cafe (since it is not as bright as the Tim
Hortons). For Emma (a student who likes to read and study in
relatively warm coffee shops), the B&N is recommended as
the top choice, followed by the Tim Hortons which is a little
colder than B&N Cafe. In the coffee shop case, we can make
the same conclusion as the hiking trail case.

C. Simulation for the Sensing Scheduling Algorithm

We evaluated performance of the proposed sensing schedul-
ing algorithm in large cases via simulation. In the simulation,
the duration of sensing scheduling period was set to 3 hours,
which is divided by 1080 time instants. The arrival (leaving)

times of mobile users were randomly generated, following
a uniform distribution between 0 (the corresponding arrival
time) and 10800s. We used a bell-shaped Guassian distribution
(with µ = 0 and σ = 10s) to model coverage, as discussed
in Section III. A simple scheduling algorithm served as the
baseline: a mobile phone starts to sense every 10s since its
arrival for NB

k times, where NB
k is the corresponding budget.

The average coverage probability was used as performance
metric, which is the sum of coverage probabilities (objective
function) divided by the total number of time instants in the
scheduling period (i.e., 1080). In the first simulation scenario,
we changed the number of mobile users from 10 to 50 with a
step size of 5 and the budgets of all mobile users were fixed
to 17. In the second scenario, we changed the budget from 15
to 25 with a step size of 1 and the numbers of mobile users
were fixed to 40. We presented the results in Fig. 14. Note
that every number in the figure is an average over 10 runs.

10 15 20 25 30 35 40 45 50 55
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of mobile users

A
ve

ra
g

e
co

ve
ra

g
e

p
ro

b
ab

ili
ty

Ours
Baseline

(a) Varying # of mobile users

15 16 17 18 19 20 21 22 23 24 25
0.4

0.5

0.6

0.7

0.8

0.9

1

Budget

A
ve

ra
g

e
co

ve
ra

g
e

p
ro

b
ab

ili
ty

Ours
Baseline

(b) Varying budget

Fig. 14. Performance of the sensing scheduling algorithm

From the figure, we can see that on average, our scheduling
algorithm outperforms the baseline algorithm by 65% in terms
of average coverage probability. From Fig. 14(a), we can see
that when 55 users participate in sensing, our algorithm leads
to almost 100% coverage. In order to achieve an average
coverage probability of 80%, our scheduling algorithm need
no more than 40 users (with a budget of 17) while the baseline
algorithm can only reach an average coverage probability
of 50% with 40 users. Similar observations can be made
from Fig. 14(b). No matter which method is used, the average
coverage probability always increases with the number of
mobile users and budget as expected. In addition, we observe
that the variance of the coverage probability given by our
scheduling algorithm is always less than that given by the
baseline algorithm, which means our algorithm is more stable
and is suitable for various situations.

VI. RELATED WORK

Comprehensive reviews for mobile phone sensing systems
and applications can be founded in [16] and [26]. In the
following, we briefly introduce a few representative systems
developed for transportation, social networking, healthcare and
environment monitoring.

Nericell [20] is a mobile phone sensing based road condition
and traffic monitoring system, which uses various sensors on a
mobile phone to detect potholes, bumps, braking and honking.
Another system is VTrack [29], which, however, tracks the
traffic delays and congestions. In [5], the authors proposed
a system aimed at early detection and alert of dangerous
vehicle maneuvers. As its name suggests, Micro-blogs [9] is a
mobile phone sensing system developed for social networks.
CenceMe, developed by Miluzzo et al. [19], represents the
first system that combines the inference of the presence of
individuals using sensor-enabled mobile phones with sharing
of this information through social networks. A healthcare
system, UbiFit Garden [2], infers people’s activities throughout
everyday life via mobile phone sensing. In [4], Cui et al.
studied the environment impact of air temperature on thermal
comfort, motivation, performance and their relationship.

PEIR (Personal Environmental Impact Report) [21] is a mo-
bile phone sensing application that uses location data sampled
from phones everyday to calculate personalized estimates of
environmental impact and exposure. Another example is the
ear-phone [24] system for noise monitoring.

Sensing scheduling and coordination have been studied in
the context of mobile phone sensing recently. A protocol,
Aquiba [28], was proposed to exploit opportunistic collab-
oration of pedestrians for mobile phone sensing. In [30],
several mechanisms were introduced for automated mapping
of urban areas that provide a virtual sensor abstraction to
applications. Spatial and temporal coverage metrics were also
presented for measuring the quality of acquired data. In a re-
cent work [25], Sheng et al. presented optimal algorithms and
practical heuristic algorithms for energy-efficient collaborative
sensing scheduling problems.

To the best of our knowledge, we are the first to build
a system to leverage mobile phone sensing for ranking and
recommendation.

VII. CONCLUSIONS

In this paper, we presented design, implementation and
evaluation of SOR. SOR is easy to use and its architecture
is so scalable that various sensors can be easily integrated
into it. We presented an online scheduling algorithm for
coverage maximization, which has a constant approximation
ratio of 1/2; moreover, we presented a personalizable ranking
algorithm, which ranks target places based on various sensor
readings and user preferences. Both of them have been used
in SOR for scheduling and ranking respectively. We validated
and evaluated SOR via both field tests (using real hiking trails
and coffee shops in Syracuse as target places) and simulation.
Field-testing results showed that data collected and processed
by SOR can well capture characteristics of target places, and
personalizable rankings produced by SOR can well match

user preferences. In addition, simulation results showed that
the proposed scheduling algorithm outperforms a baseline
algorithm by 65% in terms of average coverage probability.

REFERENCES

[1] R. K. Ahuja, T. L. Magnanti and J. B. Orlin, Network flows: theory,
algorithms, and applications, Prentice Hall, 1993.

[2] S. Consolvo et al. , Activity sensing in the wild: a field trial of ubifit
garden, ACM SIGCHI’2008, pp. 1797–1806.

[3] Clark reservation, http://nysparks.com/parks/126/details.aspx
[4] W. Cui, G. Cao, J. Park,and Q. Ouyang and Y. Zhu, Influence of indoor

air temperature on human thermal comfort, motivation and performance
Building and Environment, Vol. 68, 2013 pp. 1144–122.

[5] J. Dai, J. Teng, X. Bai, Z. Shen and D. Xuan, Mobile phone based drunk
driving detection, IEEE PervasiveHealth’10.

[6] P. Diaconis and R. L. Graham, Spearman’s footrule as a measure of
disarray, Journal of the Royal Statistical Society, Series B, pp. 262–
268, 1977.

[7] C. Dwork, R. Kumar, M. Naor and D. Sivakumar, Rank aggregation
methods for the web, WWW’2001, pp. 613–622.

[8] Fitbit, http://www.fitbit.com.
[9] S. Gaonkar et al. , Micro-blog: sharing and querying content through

mobile phones and social participation, ACM MobiSys’2008, pp. 174–
186.

[10] L. Gargano and M. Hammar, A note on submodular set cover on
matroids, Discrete Mathematics, Vol. 309, No. 18, 2009, pp. 5739–5744.

[11] Google Glass, http://www.google.com/glass/start/.
[12] Green lake state park, http://nysparks.com/parks/172.
[13] E. Koukoumidis, L. S. Peh and M. R. Martonosi, SignalGuru: leveraging

mobile phones for collaborative traffic signal schedule advisory, ACM
MobiSys’2011, pp. 127–140.

[14] J. Kemeny, Mathematics without numbers, Daedalus’88, pp. 571-91.
[15] J. Kemeny and S. Lawrence, Mathematical models in the social sciences.

Boston:Ginn, 1960.
[16] N. D. Lane et al. , A survey of mobile phone sensing, IEEE Communi-

cations Magazine, Vol. 48, No. 9, 2010, pp. 140–150.
[17] L. Li, X. Zhao and G. Xue, Unobservable re-authentication for smart-

phones, NDSS’2013, pp. 24–27.
[18] Lua, http://www.lua.org/.
[19] E. Miluzzo et al. , Sensing meets mobile social networks: the design,

implementation and evaluation of the CenceMe application, ACM Sen-
Sys’2008, pp. 337–350.

[20] P. Mohan, V. N. Padmanabhan and R. Ramjee, Nericell: rich moni-
toring of road and traffic conditions using mobile smartphones, ACM
SenSys’2008, pp. 323–336.

[21] M. Mun et al. , PEIR, the personal environmental impact report, as a
platform for participatory sensing systems research, ACM Mobisys’2009,
pp 55–68.

[22] E. Ngai and J. Xiong, Adaptive collaborative sensing using mobile
phones and stationary sensors, IEEE/IFIP DSN-W’2008, pp. 280–285.

[23] PostgreSQL, http://www.postgresql.org/.
[24] R. K. Rana et al. , Ear-phone: an end-to-end participatory urban noise

mapping system, ACM IPSN’2010, pp. 105–116.
[25] X. Sheng, J. Tang and W. Zhang, Energy-efficient collaborative sensing

with mobile phones, IEEE Infocom’2012, pp. 1916–1924.
[26] X. Sheng, J. Tang, X. Xiao and Guoliang Xue, Sensing as a Service:

Challenges, Solutions and Future Directions, IEEE Sensors Journal, Vol.
13, No. 10, pp. 3733–3741

[27] Sensordrone, http://sensorcon.com/sensordrone/.
[28] N. Thepvilojanapong, S. I. Konomi, Y. Tobe, Y. Ohta, M. Iwai and

K. Sezaki, Opportunistic collaboration in participatory sensing environ-
ments, ACM MobiArch’2010, pp. 39–44.

[29] A. Thiagarajan et al. , VTrack: accurate, energy-aware road traffic delay
estimation using mobile phones, ACM Sensys’2009, pp. 85–98.

[30] H. Weinschrott, F. Durr and K. Rothermel, StreamShaper: coordination
algorithms for participatory mobile urban sensing, IEEE MASS’2010,
pp. 195–204.

[31] D. Yang, X. Fang and G. Xue, ESPN: Efficient server placement
in probabilistic networks with budget constraint, IEEE Infocom’2011,
pp. 1269–1277.

[32] R. Zhang, J. Shi, Y. Zhang, and C. Zhang, Verifiable privacy -preserving
aggregation in people-centric urban sensing systems, IEEE Journal of
Selected Areas on Communications, Vol. 30, No.9, 2013, pp. 268–278.

[33] X. Zhu, Q. Li and G. Chen, APT: Accurate Outdoor Pedestrian Tracking
with Smartphones, IEEE Infocom’13, pp. 2508–2516.

